Planning and Optimization
D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Malte Helmert and Gabriele Roger

Universitat Basel

October 18, 2023

Content of this Course

— Prelude

— Foundations

— Approaches
| Plamning | | [Deete Relosation| 1,1
Task Graphs

— Abstraction

Relaxation
Heuristics

— Critical Paths

— Constraints

The Domination Lemma

@000

The Domination Lemma

0e00

The Domination Lemma ‘m on Lemma Consequences Vlonotonicity Summar

On-Set and Domlnatlng States

Definition (On-Set)

The on-set of an interpretation s is the set of propositional
variables that are true in s, i.e., on(s) = s 1({T}).

~ for states of propositional planning tasks:
states can be viewed as sets of (true) state variables

Definition (Dominate)

An interpretation s’ dominates an interpretation s if

on(s) C on(s').

~> all state variables true in s are also true in s’

The Domination Lemma

[e]e] o]

Domination Lemma (1)

Lemma (Domination)

Let s and s’ be interpretations of a set of propositional variables V,
and let x be a propositional formula over V
which does not contain negation symbols.

If s E x and s’ dominates s, then s’ |= x.

.

Proof by induction over the structure of .
m Base case Y = T: then s’ ET.
m Base case x = L: then s [£ L.

.

The Domination Lemma ation Lemma Consequences Monotonicity

[eJe]e]]

Domination Lemma (2)

Proof (continued).
m Base case y =v € V: if s E v, then v € on(s).
With on(s) C on(s’), we get v € on(s’) and hence s’ |= v.

m Inductive case y = x1 A x2: by induction hypothesis, our
claim holds for the proper subformulas x; and x> of x.

sEx = sEFExuix
= s Exiands E x2
LH. (twi
=) ssExiand s’ Exo
= s xi A xe
== s'Ex.

m Inductive case Y = x1 V x2: analogous

The Relaxation Lemma
00000000

The Relaxation Lemma

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

0O@000000

Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V.
Let e be an effect over V, and let s be a state over V.

The add set of e in s, written addset(e, s),

and the delete set of e in s, written delset(e, s),

are defined as the following sets of state variables:

addset(e,s) = {v € V| s |= effcond(v, e)}
delset(e,s) = {v € V | s = effcond(—v, e)}

Note: For all states s and operators o applicable in s, we have
on(s[o]) = (on(s) \ delset(eff{0), s)) U addset(eff(0), s).

[e]e] le]e]elele]

The Domination Lemma The Relaxation Lemma Consequences Monotonicity

Relaxation Lemma

For this and the following chapters on delete relaxation,
we assume implicitly that we are working with
propositional planning tasks in positive normal form.

Lemma (Relaxation)

Let s be a state, and let s’ be a state that dominates s.

© If o is an operator applicable in s,

then o™ is applicable in s’ and s'[o™] dominates s[o].
@ If 7 is an operator sequence applicable in s,

then 't is applicable in s' and s'[7] dominates s[x].

© If additionally 7 leads to a goal state from state s,
then ™ leads to a goal state from state s'.

The Domination Lemma The Relaxation Lemma

[e]e]e] le]elele]

Proof of Relaxation Lemma (1)

Let V be the set of state variables.

Part 1: Because o is applicable in s, we have s = pre(o).

Because pre(o) is negation-free and s’ dominates s,
we get s’ = pre(o) from the domination lemma.

Because pre(o™) = pre(o), this shows that o™ is applicable in s’.

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

[e]e]ele] lelele]

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that s’[o™] dominates s[o],
we first compare the relevant add sets:

addset(eff{0),s) = {v € V| s |= effcond(v, eff(0))}
={v €V |s [effcond(v,effo™))} (1)
C{ve V|s | effcond(v,effo™))} (2)
= addset(effo™),s),

where (1) uses effcond(v, eff(0)) = effcond(v, effo™))
and (2) uses the dominance lemma (note that effect conditions
are negation-free for operators in positive normal form).

The Domination Lemma The Relaxation Lemma Consequences Monotonicity Summary

00000800

Proof of Relaxation Lemma (3)

Proof (continued).

We then get:

on(s[o]) = (on(s) \ delset(eff(0),s)) U addset(eff(0), s)
C on(s) U addset(eff(0), s)
C on(s") U addset(eff(o™), s)
= on(s'[o™]),

and thus s'[o™] dominates s[o].

This concludes the proof of Part 1.

The Domination Lemma The Relaxation Lemma Consequences Monotonicity

00000080

Proof of Relaxation Lemma (4)

Proof (continued).

Part 2: by induction over n = |7|

Base case: m = ()

The empty plan is trivially applicable in s’, and

s'[()*] = s’ dominates s[()] = s by prerequisite.

Inductive case: m = (o1,...,0nt1)

By the induction hypothesis, (o;“, ...,05) is applicable in s/,
and t' = s'[{of,...,0;)] dominates t = s[{o1,...,0n)].
Also, op+1 is applicable in t.

Using Part 1, o, is applicable in t' and s'[7 "] = [0}, ;]
dominates s[7]] = t[on+1]-

This concludes the proof of Part 2.

O000000e

The Domination Lemma The Relaxation Lemma

Proof of Relaxation Lemma (5)

Proof (continued).

Part 3: Let v be the goal formula.
From Part 2, we obtain that t' = s'[7"] dominates t = s[n].
By prerequisite, t is a goal state and hence t |= 7.

Because the task is in positive normal form, ~ is negation-free,
and hence t' = v because of the domination lemma.

Therefore, t’ is a goal state. O

Consequences
©000

Consequences

The Domination Lemma tion Lemma Consequences Monotonicity

0e00

Consequences of the Relaxation Lemma

m The relaxation lemma is the main technical result
that we will use to study delete relaxation.

m Next, we show two further properties of delete relaxation
that will be useful for us.

m They are direct consequences of the relaxation lemma.

[e]e] o]

The Domination Lemma ation Lemma Consequences Monotonicity

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let m be an operator sequence that is applicable in state s.
Then w is applicable in s and s[w "] dominates s[r].
If w is a plan for 1, then w is a plan for M.

Apply relaxation lemma with s’ = s. 0J \

~> Relaxations of plans are relaxed plans.

~ Delete relaxation is no harder to solve than original task.

~» Optimal relaxed plans are never more expensive
than optimal plans for original tasks.

The Domination Lemma

Consequences Monotonicity

[e]e]e]]

Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s' be a state that dominates s,
and let T be a relaxed operator sequence applicable in s.

Then 7t is applicable in s’ and s'[nt] dominates s[x].

y

Apply relaxation lemma with 7+ for 7,
noting that (7 7)" =7+,

Ol

N

~> |If there is a relaxed plan starting from state s,
the same plan can be used starting from a dominating state s’.

~» Dominating states are always “better” in relaxed tasks.

Monotonicity
©00

Monotonicity

Monotonicity
0e0

ation Lemma Col

The Domination Lemma

Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)

Let s be a state in which relaxed operator o™ is applicable.
Then s[o™] dominates s.

Summar

.

Since relaxed operators only have positive effects,
we have on(s) C on(s) U addset(effo™), s) = on(s[o™]).

~> Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.

Monotonicity
ooe

Finding Relaxed Plans

Using the theory we developed, we are now ready to study
the problem of finding plans for relaxed planning tasks.

~> next chapter

Summan
0

Summary

Domination Lemma ‘ n Lemma ¢ ence) Summary
fe o

Summary

m With positive normal form, having more true variables is good.
m We can formalize this as dominance between states.

m It follows that delete relaxation is a simplification:
it is never harder to solve a relaxed task than the original one.

m In delete-relaxed tasks, applying an operator always takes us
to a dominating state and therefore never hurts.

	The Domination Lemma
	

	The Relaxation Lemma
	

	Consequences
	

	Monotonicity
	

	Summary
	

