

Planning and Optimization October 18, 2023 — D2. Delete Relaxation: Properties of Relaxed Planning Tasks	
D2.1 The Domination Lemma	
D2.2 The Relaxation Lemma	
D2.3 Consequences	
D2.4 Monotonicity	
D2.5 Summary	
1. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2023 2 / 24	ŀ

On-Set and Dominating States

Definition (On-Set)

The on-set of an interpretation s is the set of propositional variables that are true in s, i.e., $on(s) = s^{-1}({\mathbf{T}})$.

→ for states of propositional planning tasks:
 states can be viewed as sets of (true) state variables

Definition (Dominate)

An interpretation s' dominates an interpretation s if $on(s) \subseteq on(s')$.

 \rightsquigarrow all state variables true in s are also true in s'

M. Helmert, G. Röger (Universität Basel)

October 18, 2023

5 / 24

The Domination Lemma

The Domination Lemma

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Planning and Optimization

Planning and Optimization

Domination Lemma (1)

Lemma (Domination)

Let s and s' be interpretations of a set of propositional variables V, and let χ be a propositional formula over V which does not contain negation symbols.

Planning and Optimization

If $s \models \chi$ and s' dominates s, then $s' \models \chi$.

Proof.

Proof by induction over the structure of χ .

- ▶ Base case $\chi = \top$: then $s' \models \top$.
- ▶ Base case $\chi = \bot$: then $s \not\models \bot$.

M. Helmert, G. Röger (Universität Basel)

D2. Delete Relaxation: Properties of Relaxed Planning Tasks D2.2 The Relaxation Lemma M. Helmert, G. Röger (Universitä Basel) Planning and Optimization Cocober 1, 2000 (2000)

. . .

6 / 24

October 18, 2023

Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect) Consider a propositional planning task with state variables *V*.

Let e be an effect over V, and let s be a state over V. The add set of e in s, written addset(e, s), and the delete set of e in s, written delset(e, s), are defined as the following sets of state variables:

> $addset(e, s) = \{v \in V \mid s \models effcond(v, e)\}$ $delset(e, s) = \{v \in V \mid s \models effcond(\neg v, e)\}$

Note: For all states *s* and operators *o* applicable in *s*, we have $on(s[[o]]) = (on(s) \setminus delset(eff(o), s)) \cup addset(eff(o), s).$

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 18, 2023 9 / 24

The Relaxation Lemma

The Relaxation Lemma

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Proof of Relaxation Lemma (1)

Proof.

Let V be the set of state variables.

Part 1: Because o is applicable in s, we have $s \models pre(o)$. Because pre(o) is negation-free and s' dominates s, we get $s' \models pre(o)$ from the domination lemma.

Because $pre(o^+) = pre(o)$, this shows that o^+ is applicable in s'.

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

The Relaxation Lemma

Relaxation Lemma

For this and the following chapters on delete relaxation, we assume implicitly that we are working with propositional planning tasks in positive normal form.

Lemma (Relaxation)

Let s be a state, and let s' be a state that dominates s.

- If o is an operator applicable in s, then o⁺ is applicable in s' and s' [[o⁺]] dominates s [[o]].
- If π is an operator sequence applicable in s, then π⁺ is applicable in s' and s' [π⁺] dominates s[[π]].

Planning and Optimization

• If additionally π leads to a goal state from state s, then π^+ leads to a goal state from state s'.

M. Helmert, G. Röger (Universität Basel)

October 18, 2023 10 / 24

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

The Relaxation Lemma

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that $s'[[o^+]]$ dominates s[[o]], we first compare the relevant add sets:

```
addset(eff(o), s) = \{v \in V \mid s \models effcond(v, eff(o))\} \\ = \{v \in V \mid s \models effcond(v, eff(o^{+}))\} (1)
\subseteq \{v \in V \mid s' \models effcond(v, eff(o^{+}))\} (2)
= addset(eff(o^{+}), s').
```

where (1) uses $effcond(v, eff(o)) \equiv effcond(v, eff(o^+))$ and (2) uses the dominance lemma (note that effect conditions are negation-free for operators in positive normal form).

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

. . .

Proof of Relaxation Lemma (3)

Proof (continued). We then get:

```
on(s[o]) = (on(s) \setminus delset(eff(o), s)) \cup addset(eff(o), s)
            \subseteq on(s) \cup addset(eff(o), s)
            \subset on(s') \cup addset(eff(o<sup>+</sup>), s')
            = on(s' [\![ o^+ ]\!]),
```

Planning and Optimization

and thus $s' \llbracket o^+ \rrbracket$ dominates $s \llbracket o \rrbracket$.

This concludes the proof of Part 1.

M. Helmert, G. Röger (Universität Basel)

October 18, 2023 13 / 24

. . .

The Relaxation Lemma

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

The Relaxation Lemma

Proof of Relaxation Lemma (4)

Proof (continued). Part 2: by induction over $n = |\pi|$ Base case: $\pi = \langle \rangle$ The empty plan is trivially applicable in s', and $s' \llbracket \langle \rangle^+ \rrbracket = s'$ dominates $s \llbracket \langle \rangle \rrbracket = s$ by prerequisite. Inductive case: $\pi = \langle o_1, \ldots, o_{n+1} \rangle$ By the induction hypothesis, $\langle o_1^+, \dots, o_n^+ angle$ is applicable in s', and $t' = s' [\![\langle o_1^+, \ldots, o_n^+ \rangle]\!]$ dominates $t = s [\![\langle o_1, \ldots, o_n \rangle]\!]$. Also, o_{n+1} is applicable in t. Using Part 1, o_{n+1}^+ is applicable in t' and $s' \llbracket \pi^+ \rrbracket = t' \llbracket o_{n+1}^+ \rrbracket$ dominates $s[\![\pi]\!] = t[\![o_{n+1}]\!]$. This concludes the proof of Part 2. . . . M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2023 14 / 24

Planning and Optimization

Consequences of the Relaxation Lemma

- The relaxation lemma is the main technical result that we will use to study delete relaxation.
- Next, we show two further properties of delete relaxation that will be useful for us.

Planning and Optimization

• They are direct consequences of the relaxation lemma.

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

M. Helmert, G. Röger (Universität Basel)

Consequences

19 / 24

17 / 24

October 18, 2023

Consequences

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s' be a state that dominates s, and let π^+ be a relaxed operator sequence applicable in s. Then π^+ is applicable in s' and s' $[\pi^+]$ dominates s $[\pi^+]$.

Proof.

Apply relaxation lemma with π^+ for π , noting that $(\pi^+)^+ = \pi^+$.

 \rightsquigarrow If there is a relaxed plan starting from state *s*, the same plan can be used starting from a dominating state *s'*.

Planning and Optimization

 \rightsquigarrow Dominating states are always "better" in relaxed tasks.

D2. Delete Relaxation: Properties of Relaxed Planning Tasks

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance) Let π be an operator sequence that is applicable in state s. Then π^+ is applicable in s and $s[\pi^+]$ dominates $s[\pi]$. If π is a plan for Π , then π^+ is a plan for Π^+ .

Proof.

Apply relaxation lemma with s' = s.

- $\rightsquigarrow\,$ Relaxations of plans are relaxed plans.
- $\rightsquigarrow\,$ Delete relaxation is no harder to solve than original task.

Planning and Optimization

→ Optimal relaxed plans are never more expensive than optimal plans for original tasks.

M. Helmert, G. Röger (Universität Basel)

October 18, 2023

18 / 24

October 18, 2023

22 / 24

Summary

Monotonicity