




| Planning and Optimization<br>October 18, 2023 — D1. Delete Relaxation: Relaxed Planning Tasks | 5                |        |
|-----------------------------------------------------------------------------------------------|------------------|--------|
| D1.1 Heuristics                                                                               |                  |        |
| D1.2 Coming Up with Heuristics                                                                |                  |        |
| D1.3 Relaxed Planning Tasks                                                                   |                  |        |
| D1.4 Summary                                                                                  |                  |        |
|                                                                                               |                  |        |
| M. Helmert, G. Röger (Universität Basel) Planning and Optimization                            | October 18, 2023 | 2 / 19 |





Heuristics

6 / 19

#### D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics Criticism of the STRIPS Heuristic Coming Up with Heuristics in a Principled Way What is wrong with the STRIPS heuristic? General Procedure for Obtaining a Heuristic quite uninformative: Simplify the problem, for example by removing the range of heuristic values in a given task is small; problem constraints. typically, most successors have the same estimate Solve the simplified problem (ideally optimally). very sensitive to reformulation: can easily transform any planning task into an equivalent one Use the solution cost for the simplified problem as a heuristic for the real problem. where h(s) = 1 for all non-goal states (how?) ignores almost all problem structure: As heuristic values are computed for every generated search state, heuristic value does not depend on the set of operators! it is important that they can be computed efficiently. $\sim$ need a better, principled way of coming up with heuristics M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2023 9 / 19 M. Helmert, G. Röger (Universität Basel) Planning and Optimization October 18, 2023 D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics D1. Delete Relaxation: Relaxed Planning Tasks Coming Up with Heuristics Relaxing a Problem: Example Planning Heuristics: Main Concepts

Example (Route Planning in a Road Network) The road network is formalized as a weighted graph over points in the Euclidean plane. The weight of an edge is the road distance between two locations.

Example (Relaxation for Route Planning)

Use the Euclidean distance  $\sqrt{|x_1 - x_2|^2 + |y_1 - y_2|^2}$ as a heuristic for the road distance between  $\langle x_1, y_1 \rangle$  and  $\langle x_2, y_2 \rangle$ This is a lower bound on the road distance ( $\rightsquigarrow$  admissible).

 $\rightsquigarrow$  We drop the constraint of having to travel on roads.

Major ideas for heuristics in the planning literature:

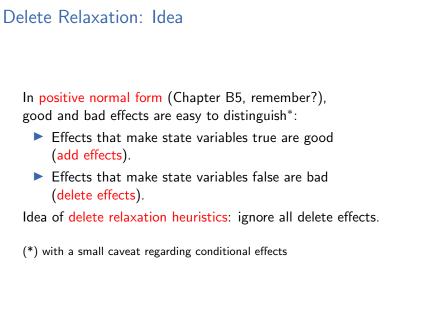
- delete relaxation → Part D
- abstraction  $\rightarrow$  Part E
- critical paths ~> Part F
- → Part G landmarks
- network flows  $\rightarrow$  Part G
- potential heuristics  $\rightsquigarrow$  Part G

We will consider all of them in this course.

10 / 19

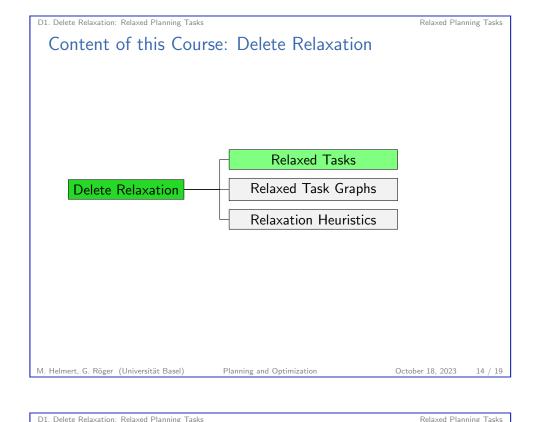
# D1.3 Relaxed Planning Tasks

M. Helmert, G. Röger (Universität Basel)


October 18, 2023

13 / 19

15 / 19


Relaxed Planning Tasks

D1. Delete Relaxation: Relaxed Planning Tasks



Planning and Optimization

Planning and Optimization



## Delete-Relaxed Planning Tasks

### Definition (Delete Relaxation of Operators)

The delete relaxation  $o^+$  of an operator o in positive normal form is the operator obtained by replacing all negative effects  $\neg a$ within *eff*(o) by the do-nothing effect  $\top$ .

Definition (Delete Relaxation of Propositional Planning Tasks) The delete relaxation  $\Pi^+$  of a propositional planning task  $\Pi = \langle V, I, O, \gamma \rangle$  in positive normal form is the planning task  $\Pi^+ := \langle V, I, \{o^+ \mid o \in O\}, \gamma \rangle.$ 

Definition (Delete Relaxation of Operator Sequences) The delete relaxation of an operator sequence  $\pi = \langle o_1, \ldots, o_n \rangle$  is the operator sequence  $\pi^+ := \langle o_1^+, \ldots, o_n^+ \rangle$ .

Planning and Optimization

Note: "delete" is often omitted: relaxation, relaxed

## Relaxed Planning Tasks: Terminology

- Planning tasks in positive normal form without delete effects are called relaxed planning tasks.
- Plans for relaxed planning tasks are called relaxed plans.
- If Π is a planning task in positive normal form and π<sup>+</sup> is a plan for Π<sup>+</sup>, then π<sup>+</sup> is called a relaxed plan for Π.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

October 18, 2023

17 / 19

Summarv

D1. Delete Relaxation: Relaxed Planning Tasks

Summary

- A general way to come up with heuristics: solve a simplified version of the real problem, for example by removing problem constraints.
- delete relaxation: given a task in positive normal form, discard all delete effects

| D1.4 Summary |  |
|--------------|--|
|              |  |

M. Helmert, G. Röger (Universität Basel)

D1. Delete Relaxation: Relaxed Planning Tasks

Planning and Optimization

October 18, 2023 18 / 19