Planning and Optimization
 C7. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Röger

Universität Basel
October 16, 2023

Content of this Course

Devising a Symbolic Search Algorithm

■ We now put the pieces together to build a symbolic search algorithm for propositional planning tasks.
■ use BDDs as a black box data structure:

- care about provided operations and their time complexity
- do not care about their internal implementation

■ Efficient implementations are available as libraries, e.g.:

- CUDD, a high-performance BDD library
- libbdd, shipped with Ubuntu Linux

Basic BDD Operations

BDD Operations: Preliminaries

- All BDDs work on a fixed and totally ordered set of propositional variables.
■ Complexity of operations given in terms of:
- k, the number of BDD variables

■ \| $B \|$, the number of nodes in the BDD B

BDD Operations (1)

BDD operations: logical/set atoms
■ bdd-fullset(): build BDD representing all assignments

- in logic: \top
- time complexity: $O(1)$

■ bdd-emptyset(): build BDD representing \emptyset

- in logic: \perp
- time complexity: $O(1)$
- bdd-atom (v) : build BDD representing $\{s \mid s(v)=\mathbf{T}\}$
- in logic: v
- time complexity: $O(1)$

BDD Operations (2)

BDD operations: logical/set connectives
■ bdd-complement (B) : build BDD representing $\overline{r(B)}$
■ in logic: $\neg \varphi$

- time complexity: $O(\|B\|)$

■ bdd-union $\left(B, B^{\prime}\right)$: build BDD representing $r(B) \cup r\left(B^{\prime}\right)$

- in logic: $(\varphi \vee \psi)$
- time complexity: $O\left(\|B\| \cdot\left\|B^{\prime}\right\|\right)$

■ bdd-intersection $\left(B, B^{\prime}\right)$: build BDD representing $r(B) \cap r\left(B^{\prime}\right)$

- in logic: $(\varphi \wedge \psi)$
- time complexity: $O\left(\|B\| \cdot\left\|B^{\prime}\right\|\right)$

BDD Operations (3)

BDD operations: Boolean tests
■ bdd-includes (B, I) : return true iff $I \in r(B)$

- in logic: $I=\varphi$?
- time complexity: $O(k)$

■ bdd-equals $\left(B, B^{\prime}\right)$: return true iff $r(B)=r\left(B^{\prime}\right)$

- in logic: $\varphi \equiv \psi$?
- time complexity: $O(1)$ (due to canonical representation)

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual and require some preliminary remarks.

Conditioning a variable v in a formula φ to \mathbf{T} or \mathbf{F}, written $\varphi[\mathbf{T} / v]$ or $\varphi[\mathbf{F} / v]$, means restricting v to a particular truth value:

Examples:
■ $(A \wedge(B \vee \neg C))[\mathbf{T} / B]=(A \wedge(T \vee \neg C)) \equiv A$
$\square(A \wedge(B \vee \neg C))[\mathbf{F} / B]=(A \wedge(\perp \vee \neg C)) \equiv A \wedge \neg C$

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S : $S[\mathbf{F} / v]$ and $S[\mathbf{T} / v]$ restrict S to elements with the given value for v and remove v from the domain of definition:

Example:

$$
\begin{aligned}
& ■ S=\{A \mapsto \mathbf{F}, B \mapsto \mathbf{F}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\} \\
& \rightsquigarrow S[\mathbf{T} / B]=\{A \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\
&\{A \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\}
\end{aligned}
$$

Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning: we allow either truth value for v and remove the variable.

We write this as $\exists v \varphi$ (for formulas) and $\exists v S$ (for sets).
Formally:
$■ \exists v \varphi=\varphi[\mathbf{T} / v] \vee \varphi[\mathbf{F} / v]$
■ $\exists v S=S[\mathbf{T} / v] \cup S[\mathbf{F} / v]$

Forgetting: Example

Examples:

$$
\begin{aligned}
■ S= & \{A \mapsto \mathbf{A}, B \mapsto \mathbf{F}, C \mapsto \mathbf{F}\}, \\
& \{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\
& \{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\} \\
\rightsquigarrow & \exists B S= \\
& \{A \mapsto \mathbf{F}, C \mapsto \mathbf{F}\}, \\
& \{A \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\
& \{A \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\} \\
\rightsquigarrow \exists C S= & \{A \mapsto \mathbf{F}, B \mapsto \mathbf{F}\}, \\
& \{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}\}\}
\end{aligned}
$$

BDD operations: conditioning and forgetting

- bdd-condition (B, v, t) where $t \in\{\mathbf{T}, \mathbf{F}\}$: build BDD representing $r(B)[t / v]$
- in logic: $\varphi[t / v]$
- time complexity: $O(\|B\|)$
- bdd-forget(B, v): build BDD representing $\exists v r(B)$
- in logic: $\exists v \varphi \quad(=\varphi[\mathbf{T} / v] \vee \varphi[\mathbf{F} / v])$
- time complexity: $O\left(\|B\|^{2}\right)$

Formulas and Singletons

Formulas to BDDs

■ With the logical/set operations, we can convert propositional formulas φ into BDDs representing the models of φ.
$■$ We denote this computation with bdd-formula (φ).

- Each individual logical connective takes polynomial time, but converting a full formula of length n can take $O\left(2^{n}\right)$ time. (How is this possible?)

Singleton BDDs

■ We can convert a single truth assignment I into a BDD representing $\{I\}$ by computing the conjunction of all literals true in I (using bdd-atom, bdd-complement and bdd-intersection).

- We denote this computation with bdd-singleton(I).
- When done in the correct order, this takes time $O(k)$.

Renaming

Renaming

We will need to support one final operation on formulas: renaming.
Renaming X to Y in formula φ, written $\varphi[X \rightarrow Y]$, means replacing all occurrences of X by Y in φ.

We require that Y is not present in φ initially.
Example:

- $\varphi=(A \wedge(B \vee \neg C))$
$\rightsquigarrow \varphi[A \rightarrow D]=(D \wedge(B \vee \neg C))$

How Hard Can That Be?

■ For formulas, renaming is a simple (linear-time) operation.
■ For a BDD B, it is equally simple $(O(\|B\|))$ when renaming between variables that are adjacent in the variable order.
■ In general, it requires $O\left(\|B\|^{2}\right)$, using the equivalence $\varphi[X \rightarrow Y] \equiv \exists X(\varphi \wedge(X \leftrightarrow Y))$

Symbolic Breadth-first Search

Planning Task State Variables vs. BDD Variables

Consider propositional planning task $\langle V, I, O, \gamma\rangle$ with states S. In symbolic planning, we have two BDD variables v and v^{\prime} for every state variable $v \in V$ of the planning task.

- use unprimed variables v to describe sets of states: $\{s \in S \mid$ some property $\}$
- use combinations of unprimed and primed variables v, v^{\prime} to describe sets of state pairs:
$\left\{\left\langle s, s^{\prime}\right\rangle \mid\right.$ some property $\}$

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $\neq \emptyset: ~_{\text {: }}$
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $^{\left(\text {reached }_{i}, O\right)}$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached ${ }_{i} \cap$ goal_states $^{=} \emptyset$ Ø:
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $^{\left(\text {reached }_{i}, O\right)}$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$

Use bdd-formula.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached ${ }_{i} \cap$ goal_states $^{=} \emptyset$ Ø:
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $^{\left(\text {reached }_{i}, O\right)}$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$

Use bdd-singleton.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $^{=} \emptyset$ Ø:
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $^{\left(\text {reached }_{i}, O\right)}$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$

Use bdd-intersection, bdd-emptyset, bdd-equals.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $\neq \emptyset: ~_{\text {: }}$
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $^{\left(\text {reached }_{i}, O\right)}$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$

Use bdd-union.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached ${ }_{i} \cap$ goal_states $^{=} \emptyset$ Ø:
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $\left(\right.$ reached $\left._{i}, O\right)$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$

Use bdd-equals.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $\neq \emptyset: ~_{\text {: }}$
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $^{\left(\text {reached }_{i}, O\right)}$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$

How to do this?

The apply Function (1)

We need an operation that

- for a set of states reached (given as a BDD)
- and a set of operators O
- computes the set of states (as a BDD) that result from applying some operator $o \in O$ in some state $s \in$ reached.
We have seen something similar already...

Translating Operators into Formulas

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.
Define $\tau_{V}(o):=\operatorname{pre}(o) \wedge \bigwedge_{v \in V}\left(\operatorname{regr}(v, \operatorname{eff}(o)) \leftrightarrow v^{\prime}\right)$.
States that o is applicable and describes how
■ the new value of v, represented by v^{\prime},

- must relate to the old state, described by variables V.

The apply Function (2)

- The formula $\tau_{V}(0)$ describes all transitions $s \xrightarrow{o} s^{\prime}$

■ induced by a single operator o
■ in terms of variables V describing s
\square and variables V^{\prime} describing s^{\prime}.

- The formula $\bigvee_{o \in O} \tau_{V}(o)$ describes state transitions by any operator in O.
- We can translate this formula to a BDD (over variables $V \cup V^{\prime}$) with bdd-formula.
- The resulting BDD is called the transition relation of the planning task, written as $T_{V}(O)$.

The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

The apply function

def apply(reached, O):
$B:=T_{V}(O)$
$B:=$ bdd-intersection(B, reached) for each $v \in V$:

$$
B:=b d d-\text { forget }(B, v)
$$

for each $v \in V$:

$$
B:=b d d-r e n a m e\left(B, v^{\prime}, v\right)
$$

return B

The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

The apply function

def apply(reached, O):
$B:=T_{V}(O)$
$B:=b d d-$ intersection(B, reached) for each $v \in V$:

$$
B:=b d d-\text { forget }(B, v)
$$

for each $v \in V$:

$$
B:=b d d-\operatorname{rename}\left(B, v^{\prime}, v\right)
$$

return B
This describes the set of state pairs $\left\langle s, s^{\prime}\right\rangle$ where s^{\prime} is a successor of s in terms of variables $V \cup V^{\prime}$.

The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

The apply function

def apply(reached, O):
$B:=T_{V}(O)$
$B:=$ bdd-intersection(B, reached)
for each $v \in V$:
$B:=b d d$-forget (B, v)
for each $v \in V$:
$B:=b d d-r e n a m e\left(B, v^{\prime}, v\right)$
return B
This describes the set of state pairs $\left\langle s, s^{\prime}\right\rangle$ where s^{\prime} is a successor of s and $s \in$ reached in terms of variables $V \cup V^{\prime}$.

The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

The apply function

def apply(reached, O):
$B:=T_{V}(O)$
$B:=$ bdd-intersection(B, reached)
for each $v \in V$:

$$
B:=b d d-\text { forget }(B, v)
$$

for each $v \in V$:

$$
B:=b d d-\operatorname{rename}\left(B, v^{\prime}, v\right)
$$

return B
This describes the set of states s^{\prime} which are successors of some state $s \in$ reached in terms of variables V^{\prime}.

The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

The apply function

def apply(reached, O):
$B:=T_{V}(O)$
$B:=$ bdd-intersection(B, reached)
for each $v \in V$:
$B:=b d d$-forget (B, v)
for each $v \in V$:

$$
B:=\text { bdd-rename }\left(B, v^{\prime}, v\right)
$$

return B
This describes the set of states s^{\prime} which are successors of some state $s \in$ reached in terms of variables V.

The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

The apply function

def apply(reached, O):
$B:=T_{V}(O)$
$B:=$ bdd-intersection(B, reached) for each $v \in V$:

$$
B:=b d d-\text { forget }(B, v)
$$

for each $v \in V$:

$$
B:=b d d-\operatorname{rename}\left(B, v^{\prime}, v\right)
$$

return B
Thus, apply indeed computes the set of successors of reached using operators O.

Discussion

Discussion

- This completes the discussion of a (basic) symbolic search algorithm for classical planning.
- We ignored the aspect of solution extraction. This needs some extra work, but is not a major challenge.
■ In practice, some steps can be performed slightly more efficiently, but these are comparatively minor details.

Variable Orders

For good performance, we need a good variable ordering.
■ Variables that refer to the same state variable before and after operator application (v and v^{\prime}) should be neighbors in the transition relation BDD.

Extensions

Symbolic search can be extended to...

- regression and bidirectional search: this is very easy and often effective
- uniform-cost search:
requires some work, but not too difficult in principle
- heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

Literature

Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677-691, 1986.
Reduced ordered BDDs.
图 Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.
R Álvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

Summary

Summary

- Symbolic search operates on sets of states instead of individual states as in explicit-state search.
■ State sets and transition relations can be represented as BDDs.

■ Based on this, we can implement a blind breadth-first search in an efficient way.

- A good variable ordering is crucial for performance.

