Planning and Optimization
 C7. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Röger
Universität Basel
October 16, 2023
M. Helmert. G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization
October 16, 2023 - C7. Symbolic Search: Full Algorithm

C7.1 Basic BDD Operations

C7.2 Formulas and Singletons
C7.3 Renaming
C7.4 Symbolic Breadth-first Search
C7.5 Discussion
C7.6 Summary
M. Helmert, G. Röger (Universität Basel)

- We now put the pieces together to build a symbolic search algorithm for propositional planning tasks.
- use BDDs as a black box data structure:
- care about provided operations and their time complexity
- do not care about their internal implementation
- Efficient implementations are available as libraries, e.g.:
- CUDD, a high-performance BDD library
- libbdd, shipped with Ubuntu Linux

C7.1 Basic BDD Operations

- All BDDs work on a fixed and totally ordered set of propositional variables.
- Complexity of operations given in terms of:
- k, the number of BDD variables
- $\|B\|$, the number of nodes in the BDD B

BDD Operations (1)

BDD operations: logical/set atoms

- bdd-fullset(): build BDD representing all assignments
- in logic: T
- time complexity: $O(1)$
- bdd-emptyset(): build BDD representing \emptyset
- in logic: \perp
- time complexity: $O(1)$
- bdd-atom (v) : build BDD representing $\{s \mid s(v)=\mathbf{T}\}$
- in logic: v
- time complexity: $O(1)$

BDD operations: logical/set connectives

- bdd-complement (B) : build BDD representing $\overline{r(B)}$
- in logic: $\neg \varphi$
- time complexity: $O(\|B\|)$
- bdd-union $\left(B, B^{\prime}\right)$: build BDD representing $r(B) \cup r\left(B^{\prime}\right)$
- in logic: $(\varphi \vee \psi)$
- time complexity: $O\left(\|B\| \cdot\left\|B^{\prime}\right\|\right)$
- bdd-intersection $\left(B, B^{\prime}\right)$: build BDD representing $r(B) \cap r\left(B^{\prime}\right)$
- in logic: $(\varphi \wedge \psi)$
- time complexity: $O\left(\|B\| \cdot\left\|B^{\prime}\right\|\right)$

BDD operations: Boolean tests

- bdd-includes (B, I) : return true iff $I \in r(B)$
- in logic: $I \models \varphi$?
- time complexity: $O(k)$
- bdd-equals $\left(B, B^{\prime}\right)$: return true iff $r(B)=r\left(B^{\prime}\right)$
- in logic: $\varphi \equiv \psi$?
- time complexity: $O(1)$ (due to canonical representation)

The last two basic BDD operations are a bit more unusual and require some preliminary remarks.

Conditioning a variable v in a formula φ to \mathbf{T} or \mathbf{F}, written $\varphi[\mathbf{T} / v]$ or $\varphi[\mathbf{F} / v]$, means restricting v to a particular truth value:

Examples:

- $(A \wedge(B \vee \neg C))[\mathbf{T} / B]=(A \wedge(T \vee \neg C)) \equiv A$
- $(A \wedge(B \vee \neg C))[\mathbf{F} / B]=(A \wedge(\perp \vee \neg C)) \equiv A \wedge \neg C$
can define the same operation for sets of assignments S $S[\mathbf{F} / v]$ and $S[\mathbf{T} / v]$ restrict S to elements with the given value for v and remove v from the domain of definition:

Example:
$\begin{aligned}-S= & \{A A \mapsto \mathbf{F}, B \mapsto \mathbf{F}, C \mapsto \mathbf{F}\}, \\ & \{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}, \\ & \{A \mapsto \mathbf{T}, B \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\}\end{aligned}$
$\rightsquigarrow S[\mathbf{T} / B]=\{\{A \mapsto \mathbf{T}, C \mapsto \mathbf{F}\}$, $\{A \mapsto \mathbf{T}, C \mapsto \mathbf{T}\}\}$

Forgetting (a.k.a. existential abstraction) is similar to conditioning we allow either truth value for v and remove the variable.

We write this as $\exists v \varphi$ (for formulas) and $\exists v S$ (for sets).

Formally:

- $\exists v \varphi=\varphi[\mathbf{T} / v] \vee \varphi[\mathbf{F} / v]$
- $\exists v S=S[\mathbf{T} / v] \cup S[\mathbf{F} / v]$

Forgetting

BDD Operations (4)

BDD operations: conditioning and forgetting

- bdd-condition (B, v, t) where $t \in\{\mathbf{T}, \mathbf{F}\}$:
build BDD representing $r(B)[t / v]$
- in logic: $\varphi[t / v]$
- time complexity: $O(\|B\|)$
- bdd-forget(B, v):
build BDD representing $\exists v r(B)$
- in logic: $\exists v \varphi \quad(=\varphi[\mathbf{T} / v] \vee \varphi[\mathbf{F} / v])$
- time complexity: $O\left(\|B\|^{2}\right)$
- With the logical/set operations, we can convert propositional formulas φ into BDDs representing the models of φ.
- We denote this computation with bdd-formula (φ).
- Each individual logical connective takes polynomial time, but converting a full formula of length n can take $O\left(2^{n}\right)$ time. (How is this possible?)
- We can convert a single truth assignment I into a BDD representing $\{I\}$ by computing the conjunction of all literals true in I (using bdd-atom, bdd-complement and bdd-intersection).
- We denote this computation with bdd-singleton(I).
- When done in the correct order, this takes time $O(k)$.

Renaming

C7.3 Renaming

Renaming			
We will need to support one final operation on formulas: renaming. Renaming X to Y in formula φ, written $\varphi[X \rightarrow Y]$, means replacing all occurrences of X by Y in φ. We require that Y is not present in φ initially.			
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	October 16, 2023	19 / 45

How Hard Can That Be?

- For formulas, renaming is a simple (linear-time) operation.
- For a BDD B, it is equally simple $(O(\|B\|))$ when renaming between variables that are adjacent in the variable order.
- In general, it requires $O\left(\|B\|^{2}\right)$, using the equivalence $\varphi[X \rightarrow Y] \equiv \exists X(\varphi \wedge(X \leftrightarrow Y))$

C7.4 Symbolic Breadth-first Search

Consider propositional planning task $\langle V, I, O, \gamma\rangle$ with states S.
In symbolic planning, we have two BDD variables v and v^{\prime} for every state variable $v \in V$ of the planning task.

- use unprimed variables v to describe sets of states: $\{s \in S \mid$ some property $\}$
- use combinations of unprimed and primed variables v, v^{\prime} to describe sets of state pairs:
$\left\{\left\langle s, s^{\prime}\right\rangle \mid\right.$ some property $\}$

Breadth-first Search with Progression and BDDs

```
Progression Breadth-first Search
def bfs-progression( \(V, I, O, \gamma)\) :
    goal_states \(:=\) models \((\gamma)\)
    reached \(_{0}:=\{I\}\)
    \(i:=0\)
    loop:
        if reached \(_{i} \cap\) goal_states \(^{=} \emptyset\) Ø:
            return solution found
        reached \(_{i+1}:=\) reached \(_{i} \cup \operatorname{apply}^{\left(\text {reached }_{i}, O\right)}\)
        if reached \(_{i+1}=\) reached \(_{i}\) :
            return no solution exists
        \(i:=i+1\)
```

Progression Breadth-first Search
def bfs-progression (V, I, O, γ) :
goal_states $:=$ models (γ)
reached $_{0}:=\{1\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $^{=} \emptyset$ $:$
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $^{\left(\text {reached }_{i}, O\right)}$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$

Use bdd-formula.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $\neq \emptyset:$
return solution found
reached $_{i+1}:=$ reached $_{i} \cup \operatorname{apply}\left(\right.$ reached $\left._{i}, O\right)$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$
Use bdd-singleton.

C7. Symbolic Search: Full Algorithm
Symbolic Breadth-first Search
Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression (V, I, O, γ) :
goal_states $:=$ models (γ)
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $\neq \emptyset:$
return solution found
reached $_{i+1}:=$ reached $_{i} \cup \operatorname{apply}\left(\right.$ reached $\left._{i}, O\right)$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$
Use bdd-intersection, bdd-emptyset, bdd-equals.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
October 16, 2023

Breadth-first Search with Progression and BDDs

```
Progression Breadth-first Search
def bfs-progression \((V, I, O, \gamma)\) :
    goal_states \(:=\operatorname{models}(\gamma)\)
    reached \(_{0}:=\{I\}\)
    \(i:=0\)
    loop:
        if reached \(_{i} \cap\) goal_states \(\neq \emptyset:\)
            return solution found
        reached \(_{i+1}:=\) reached \(_{i} \cup \operatorname{apply}^{\left(\text {reached }_{i}, O\right)}\)
        if reached \(_{i+1}=\) reached \(_{i}\) :
            return no solution exists
        \(i:=i+1\)
```

Use bdd-union.

```
Progression Breadth-first Search
def bfs-progression \((V, I, O, \gamma)\) :
    goal_states \(:=\) models \((\gamma)\)
    reached \(_{0}:=\{I\}\)
    \(i:=0\)
    loop:
        if reached \(_{i} \cap\) goal_states \(\neq \emptyset:\)
            return solution found
        reached \(_{i+1}:=\) reached \(_{i} \cup\) apply \(^{\left(\text {reached }_{i}, O\right)}\)
        if reached \(_{i+1}=\) reached \(_{i}\) :
            return no solution exists
        \(i:=i+1\)
```

Use bdd-equals.

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression (V, I, O, γ) :
goal_states $:=\operatorname{models}(\gamma)$
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $\neq \emptyset:$
return solution found
reached $_{i+1}:=$ reached $_{i} \cup \operatorname{apply}\left(\right.$ reached $\left._{i}, O\right)$
if reached $_{i+1}=$ reached $_{i}$:
return no solution exists
$i:=i+1$
How to do this?
M. Helmert, G. Räger (Universität Basel)

Translating Operators into Formulas

The apply Function (1)

We need an operation that

- for a set of states reached (given as a BDD)
- and a set of operators O
- computes the set of states (as a BDD) that result from applying some operator $o \in O$ in some state $s \in$ reached.
We have seen something similar already...

Definition (Operators in Propositional Logic)
Let o be an operator and V a set of state variables.
Define $\tau_{V}(o):=\operatorname{pre}(o) \wedge \bigwedge_{v \in V}\left(\operatorname{regr}(v, \operatorname{eff}(o)) \leftrightarrow v^{\prime}\right)$.
States that o is applicable and describes how

- the new value of v, represented by v^{\prime},
- must relate to the old state, described by variables V.

M. Helmert. G. Räger (Universität Basel)

Planning and Optimization

- The formula $\tau_{V}(0)$ describes all transitions $s \xrightarrow{o} s^{\prime}$
- induced by a single operator o
- in terms of variables V describing s
- and variables V^{\prime} describing s^{\prime}.
- The formula $\bigvee_{o \in O} \tau_{V}(o)$ describes state transitions by any operator in O.
- We can translate this formula to a BDD (over variables $V \cup V^{\prime}$) with bdd-formula.
- The resulting BDD is called the transition relation of the planning task, written as $T_{V}(O)$.

The apply Function (3)
The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:
The apply function
def apply (reached, O):
$B:=T_{V}(O)$
$B:=b d d-$ intersection $(B$, reached $)$
for each $v \in V$: $B:=b d d-\operatorname{forget}(B, v)$
for each $v \in V$:

$$
B:=\text { bdd-rename }\left(B, v^{\prime}, v\right)
$$

return B
This describes the set of state pairs $\left\langle s, s^{\prime}\right\rangle$ where s^{\prime} is a successor of s in terms of variables $V \cup V^{\prime}$.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
October 16, 2023

The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

```
The apply function
def apply(reached, \(O\) ):
    \(B:=T_{V}(O)\)
    \(B:=b d d-\) intersection( \(B\), reached)
    for each \(v \in V\) :
        \(B:=b d d\)-forget \((B, v)\)
    for each \(v \in V\) :
        \(B:=\) bdd-rename \(\left(B, v^{\prime}, v\right)\)
    return \(B\)
```

This describes the set of state pairs $\left\langle s, s^{\prime}\right\rangle$ where s^{\prime} is a successor of s and $s \in$ reached in terms of variables $V \cup V^{\prime}$.

The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

```
The apply function
def apply (reached, \(O\) ):
    \(B:=T_{V}(O)\)
    \(B:=b d d-\) intersection \((B\), reached \()\)
    for each \(v \in V\) :
        \(B:=b d d-\) forget \((B, v)\)
    for each \(v \in V\) :
        \(B:=\) bdd-rename \(\left(B, v^{\prime}, v\right)\)
    return \(B\)
```

This describes the set of states s^{\prime} which are successors of some state $s \in$ reached in terms of variables V^{\prime}.

The apply Function (3)
The apply Function (3)

Using the transition relation, we can compute apply(reached, O) as follows:

The apply function
def apply (reached, O):
$B:=T_{V}(O)$
$B:=$ bdd-intersection(B, reached)
for each $v \in V$: $B:=b d d-\operatorname{forget}(B, v)$
for each $v \in V$:

$$
B:=\text { bdd-rename }\left(B, v^{\prime}, v\right)
$$

return B
This describes the set of states s^{\prime} which are successors of some state $s \in$ reached in terms of variables V.

Using the transition relation, we can compute apply(reached, O) as follows:
The apply function
def apply (reached, O):
$B:=T_{V}(O)$
$B:=$ bdd-intersection(B, reached)
for each $v \in V$:
$B:=\operatorname{bdd}-\operatorname{forget}(B, v)$
for each $v \in V$.
$B:=$ bdd-rename $\left(B, v^{\prime}, v\right)$
return B
Thus, apply indeed computes the set of successors of reached using operators O.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

C7.5 Discussion

- This completes the discussion of a (basic)
symbolic search algorithm for classical planning.
- We ignored the aspect of solution extraction.

This needs some extra work, but is not a major challenge.

- In practice, some steps can be performed slightly more efficiently, but these are comparatively minor details.

For good performance, we need a good variable ordering.

- Variables that refer to the same state variable before and after operator application (v and v^{\prime}) should be neighbors in the transition relation BDD.

Symbolic search can be extended to...

- regression and bidirectional search: this is very easy and often effective
- uniform-cost search requires some work, but not too difficult in principle
- heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

```
Literature
Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.
圊 Álvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning
PhD Thesis, 2015.
State of the art of symbolic search planning.
C7. Symbolic Search: Full Algorithm

C7.6 Summary
- Symbolic search operates on sets of states instead of individual states as in explicit-state search.
- State sets and transition relations can be represented as BDDs.
- Based on this, we can implement a blind breadth-first search in an efficient way.
- A good variable ordering is crucial for performance.```

