Planning and Optimization
C6. Symbolic Search: Binary Decision Diagrams

Malte Helmert and Gabriele Röger
Universität Basel
October 16, 2023
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization
October 16, 2023 - C6. Symbolic Search: Binary Decision Diagrams

C6.1 Motivation

C6.2 Data Structures for State Sets
C6.3 Binary Decision Diagrams
C6.4 BDDs as Canonical Representations
C6.5 Summary

C6.1 Motivation

- come up with a good data structure for sets of states
- hope: (at least some) exponentially large state sets can be represented as polynomial-size data structures
- simulate a standard search algorithm like breadth-first search using these set representations

C6. Symbolic Search: Binary Decision Diagrams

Symbolic Breadth-First Progression Search
def bfs-progression (V, I, O, γ) :
goal_states $:=$ models (γ)
reached $_{0}:=\{I\}$
$i:=0$
loop:
if reached $_{i} \cap$ goal_states $\neq \emptyset:$
return solution found
reached $_{i+1}:=$ reached $_{i} \cup$ apply $^{\left(\text {reached }_{i}, O\right)}$
if reached $_{i+1}=$ reached $_{i}$
return no solution exists
$i:=i+1$
\rightsquigarrow If we can implement operations models, $\{I\}, \cap, \neq \emptyset, \cup$, apply and $=$ efficiently, this is a reasonable algorithm.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Data Structures for State Sets
Representing State Sets

We need to represent and manipulate state sets (again)!

- How about an explicit representation, like a hash table?
- And how about our good old friend, the formula?

Time Complexity: Explicit Representations vs. Formulas

Let k be the number of state variables,
$|S|$ the number of states in S and
$\|S\|$ the size of the representation of S.

	Hash table	Formula		
$s \in S ?$	$O(k)$	$O(\\|S\\|)$		
$S:=S \cup\{s\}$	$O(k)$	$O(k)$		
$S:=S \backslash\{s\}$	$O(k)$	$O(k)$		
$S \cup S^{\prime}$	$O\left(k\|S\|+k\left\|S^{\prime}\right\|\right)$	$O(1)$		
$S \cap S^{\prime}$	$O\left(k\|S\|+k\left\|S^{\prime}\right\|\right)$	$O(1)$		
$S \backslash S^{\prime}$	$O\left(k\|S\|+k\left\|S^{\prime}\right\|\right)$	$O(1)$		
\bar{S}	$O\left(k 2^{k}\right)$	$O(1)$		
$\{s \mid s(v)=\mathbf{T}\}$	$O\left(k 2^{k}\right)$	$O(1)$		
$S=\emptyset ?$	$O(1)$	co-NP-complete		
$S=S^{\prime} ?$	$O(k\|S\|)$	co-NP-complete		
$\|S\|$	$O(1)$	\#P-complete		

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
-
Which Operations are Important?

- Explicit representations such as hash tables are unsuitable because their size grows linearly with the number of represented states.
- Formulas are very efficient for some operations, but not for other important operations needed by the breadth-first search algorithm.
- Examples: $S \neq \emptyset$?, $S=S^{\prime}$?

Time Complexity: Formulas vs. BDDs

Let k be the number of state variables,
$|S|$ the number of states in S and
$\|S\|$ the size of the representation of S.

	Formula	BDD					
$s \in S ?$	$O(\\|S\\|)$	$O(k)$					
$S:=S \cup\{s\}$	$O(k)$	$O(k)$					
$S:=S \backslash\{s\}$	$O(k)$	$O(k)$					
$S \cup S^{\prime}$	$O(1)$	$O\left(\\|S\\|\left\\|S^{\prime}\right\\|\right)$					
$S \cap S^{\prime}$	$O(1)$	$O\left(\left\\|\left\\|\left\\|\left\\|S^{\prime}\right\\|\right)\right.\right.\right.$					
$S \backslash S^{\prime}$	$O(1)$	$O\left(\\|S\\|\left\\|S^{\prime}\right\\|\right)$					
S	$O(1)$	$O(\\|S\\|)$					
$\{s \mid s(v)=\mathbf{T}\}$	$O(1)$	$O(1)$					
$S=\emptyset ?$	co-NP-complete	$O(1)$					
$S=S^{\prime} ?$	co-NP-complete	$O(1)$					
$\|S\|$	\#P-complete	$O(\\|S\\|)$					

Remark: Optimizations allow BDDs with complementation (\bar{S})
in constant time, but we will not discuss this here.

C6.3 Binary Decision Diagrams

C6. Symbolic Search: Binary Decision Diagrams	Binary Decision Diagrams
Binary Decision Diagrams: Definition	

Example

Possible BDD for $(u \wedge v) \vee w$

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

Binary Decision Diagrams: Definition
Binary Decision Diagrams: Terminology

Definition (BDD)

Let V be a set of propositional variables.
A binary decision diagram (BDD) over V is a directed acyclic graph with labeled arcs and labeled vertices such that:

DD Terminology

- The node without incoming arcs is called the root.
- There is exactly one node without incoming arcs.
- The labeling variable of an internal node is called the decision variable of the node.
- The nodes reached from node n via the arc labeled $i \in\{0,1\}$ is called the i-successor of n.
- The BDDs which only consist of a single sink are called the zero BDD and one BDD.
A note on notation:
$-\ln$ BDDs, 1 stands for \mathbf{T} and 0 for \mathbf{F}.
- We follow this customary notation in BDDs, but stick to \mathbf{T} and \mathbf{F} when speaking of logic.

Observation: If B is a BDD and n is a node of B, then the subgraph induced by all nodes reachable from n is also a BDD

C. Symbolic Search: Binary Decision Diagrams

BDD Example

All sinks (nodes without outgoing arcs) are labeled 0 or 1 .

- All other nodes are labeled with a variable $v \in V$ and have exactly two outgoing arcs, labeled 0 and 1 .
- This BDD is called the BDD rooted at n.

C6.4 BDDs as Canonical Representations

Testing whether a BDD Includes a Variable Assignment

def bdd-includes(B : BDD, I: variable assignment):
Set n to the root of B.
while n is not a sink:
Set v to the decision variable of n.
Set n to the 1-successor of n if $I(v)=\mathbf{T}$ and to the 0 -successor of n if $I(v)=\mathbf{F}$.
return true if n is labeled 1 , false if it is labeled 0 .
Definition (Set Represented by a BDD)
Let B be a BDD over variables V.
The set represented by B, in symbols $r(B)$,
consists of all variable assignments $I: V \rightarrow\{\mathbf{T}, \mathbf{F}\}$ for which $b d d$-includes (B, I) returns true.

Ordered BDDs: Motivation

Ordered BDDs: Definition

- As a first step towards a canonical representation, we now require that the set of variables is totally ordered by some ordering \prec.
- In particular, we will only use variables $v_{1}, v_{2}, v_{3}, \ldots$ and assume the ordering $v_{i} \prec v_{j}$ iff $i<j$.

Definition (Ordered BDD)
A BDD is ordered (w.r.t. \prec) iff for each arc from a node with decision variable u to a node with decision variable v, we have $u \prec v$.
Both BDDs represent the same state set, namely the singleton set $\{\{u \mapsto \mathbf{T}, v \mapsto \mathbf{F}\}\}$.
In general, BDDs are not a canonical representation for sets of interpretations. Here is a simple counter-example $(V=\{u, v\})$:

Example (BDDs for $u \wedge \neg v$ with Different Variable Order)

Example (Ordered and Unordered BDD)

The left BDD is ordered w.r.t. the ordering we use in this chapter, the right one is not.

Reduced Ordered BDDs: Are Ordered BDDs Canonical?

Example (Two equivalent BDDs that can be reduced)

- Ordered BDDs are still not canonical:
both ordered BDDs represent the same set.
- However, ordered BDDs can easily be made canonical.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
October 16, $2023 \quad 22$ / 32

C6. Symbolic Search: Biaray Decision Diagrams
Reduced Ordered BDDs: Reductions (2) BDDs as Canonical Representations
Reduced Ordered BDDs: Reductions (1)

There are two important operations on BDDs that do not change the set represented by it:

Definition (Isomorphism Reduction)
If the BDDs rooted at two different nodes n and n^{\prime} are isomorphic, then all incoming arcs of n^{\prime} can be redirected to n, and all BDD nodes unreachable from the root can be removed.

Example (Isomorphism Reduction)

Example (Isomorphism Reduction)

There are two important operations on BDDs that do not change the set represented by it:

Definition (Shannon Reduction)
If both outgoing arcs of an internal node n of a BDD lead to the same node m, then n can be removed from the BDD, with all incoming arcs of n going to m instead.

Example (Isomorphism Reduction)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

BDDs as Canonical Representations
Reduced Ordered BDDs: Reductions (4)

Example (Shannon Reduction)

C6. Symbolic Search: Binary Decision Diagrams

Example (Shannon Reduction)

Definition (Reduced Ordered BDD)
An ordered BDD is reduced iff it does not admit any isomorphism reduction or Shannon reduction.

Theorem (Bryant 1986)
For every state set S and a fixed variable ordering,
there exists exactly one reduced ordered BDD representing S.
Moreover, given any ordered $B D D$, the equivalent reduced ordered $B D D$ can be computed in linear time in the size of B.
\rightsquigarrow Reduced ordered BDDs are the canonical representation we are looking for.

From now on, we simply say BDD for reduced ordered BDD.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
October 16, 2023

Summary

- Symbolic search is based on the idea of performing a state-space search where many states are considered "at once" by operating on sets of states rather than individual states.
- Binary decision diagrams are a data structure to compactly represent and manipulate sets of variable assignments.
- Reduced ordered BDDs are a canonical representation of such sets.

