

C5. SAT Planning: Parallel Encoding

Efficiency of SAT Planning

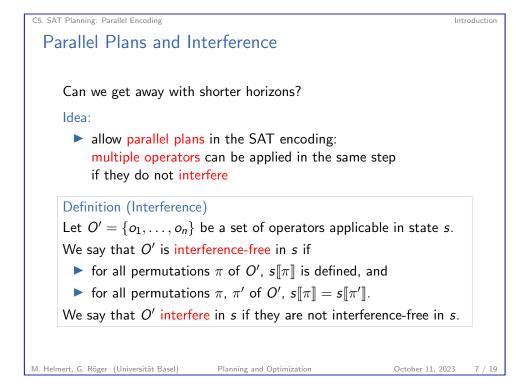
- All other things being equal, the most important aspect for efficient SAT solving is the number of propositional variables in the input formula.
- For sufficiently difficult inputs, runtime scales exponentially in the number of variables.
- → Can we make SAT planning more efficient by using fewer variables?

M. Helmert, G. Röger (Universität Basel)

October 11, 2023

Introduction

5 / 19



Planning and Optimization

C5. SAT Planning: Parallel Encoding

Number of Variables

Reminder:

- ▶ given propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$
- ▶ given horizon $T \in \mathbb{N}_0$

Variables of the SAT Formula

- ▶ propositional variables vⁱ for all v ∈ V, 0 ≤ i ≤ T encode state after i steps of the plan
- ▶ propositional variables oⁱ for all o ∈ O, 1 ≤ i ≤ T encode operator(s) applied in *i*-th step of the plan

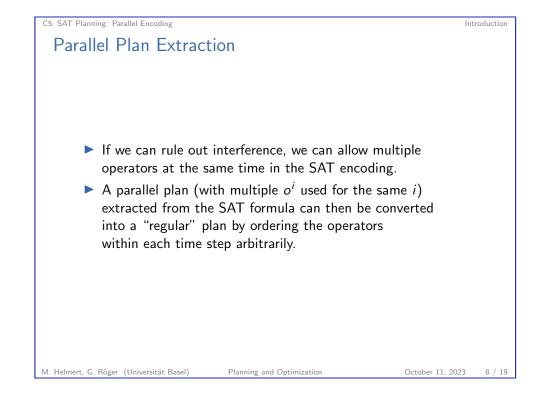
$\rightsquigarrow |V| \cdot (T+1) + |O| \cdot T$ variables

 \rightsquigarrow SAT solving runtime usually exponential in ${\it T}$

M. Helmert, G. Röger (Universität Basel)

October 11, 2023

6 / 19



Planning and Optimization

Challenges for Parallel SAT Encodings

M. Helmert, G. Röger (Universität Basel)

C5.2 Adapting the SAT Encoding

M. Helmert, G. Röger (Universität Basel)

Two challenges remain:

October 11, 2023

Introduction

9 / 19

C5. SAT Planning: Parallel Encoding Adapting the SAT Encoding Reminder: Sequential SAT Encoding (1) Sequential SAT Formula (1) initial state clauses: $\blacktriangleright v^0$ for all $v \in V$ with $I(v) = \mathbf{T}$ $\blacktriangleright \neg v^0$ for all $v \in V$ with $I(v) = \mathbf{F}$ goal clauses: $\triangleright \gamma^T$ operator selection clauses: $\blacktriangleright o_1^i \lor \cdots \lor o_n^i$ for all $1 \leq i \leq T$ operator exclusion clauses: $\blacktriangleright \neg o_i^i \lor \neg o_k^i$ for all $1 \leq i \leq T$, $1 \leq j < k \leq n$ → operator exclusion clauses must be adapted

Planning and Optimization

our current SAT encoding does not allow concurrent operators

Planning and Optimization

▶ how do we ensure that our plans are interference-free?

C5. SAT Planning: Parallel Encoding Sequential SAT Encoding (2) Sequential SAT Formula (2) precondition clauses: • $o^i \rightarrow pre(o)^{i-1}$ for all $1 \le i \le T$, $o \in O$ positive and negative effect clauses: • $(o^i \land \alpha^{i-1}) \rightarrow v^i$ for all $1 \le i \le T$, $o \in O$, $v \in V$ • $(o^i \land \delta^{i-1} \land \neg \alpha^{i-1}) \rightarrow \neg v^i$ for all $1 \le i \le T$, $o \in O$, $v \in V$ positive and negative frame clauses: • $(o^i \land v^{i-1} \land \neg v^i) \rightarrow \delta^{i-1}$ for all $1 \le i \le T$, $o \in O$, $v \in V$ • $(o^i \land \neg v^{i-1} \land \neg v^i) \rightarrow \delta^{i-1}$ for all $1 \le i \le T$, $o \in O$, $v \in V$ • $(o^i \land \neg v^{i-1} \land v^i) \rightarrow \alpha^{i-1}$ for all $1 \le i \le T$, $o \in O$, $v \in V$ where $\alpha = effcond(v, eff(o))$, $\delta = effcond(\neg v, eff(o))$.

Planning and Optimization

October 11, 2023

10 / 19

Adapting the Operator Exclusion Clauses: Idea

Reminder: operator exclusion clauses $\neg o_i^i \lor \neg o_k^i$ for all $1 \le i \le T$. $1 \le i \le k \le n$

 \blacktriangleright Ideally: replace with clauses that express "for all states s, the operators selected at time *i* are interference-free in *s*"

Planning and Optimization

- but: testing if a given set of operators interferes in any state is itself an NP-complete problem
- → use something less heavy: a sufficient condition for interference-freeness that can be expressed at the level of pairs of operators

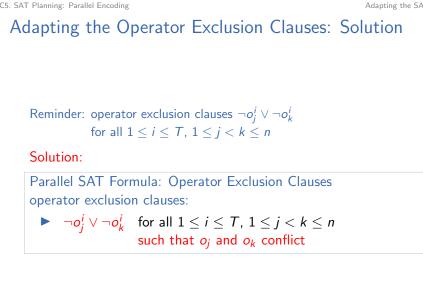
M. Helmert, G. Röger (Universität Basel)

October 11, 2023 13 / 19

C5. SAT Planning: Parallel Encoding

Adapting the SAT Encoding

15 / 19



C5. SAT Planning: Parallel Encoding

Conflicting Operators

- Intuitively, two operators conflict if
 - one can disable the precondition of the other,
 - one can override an effect of the other, or
 - one can enable or disable an effect condition of the other.
- \blacktriangleright If no two operators in a set O' conflict, then O' is interference-free in all states.
- This is still difficult to test. so we restrict attention to the STRIPS case in the following.

Definition (Conflicting STRIPS Operator)

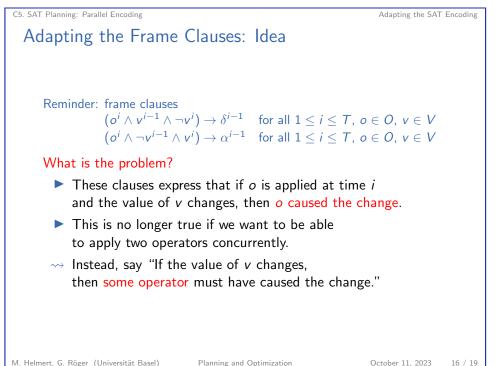
Operators o and o' of a STRIPS task Π conflict if

- \triangleright o deletes a precondition of o' or vice versa, or
- \triangleright o deletes an add effect of o' or vice versa.

```
M. Helmert, G. Röger (Universität Basel)
```

October 11, 2023

14 / 19



Planning and Optimization

October 11, 2023

C5. SAT Planning: Parallel Encoding

Adapting the SAT Encoding

Adapting the Frame Clauses: Solution

Reminder: frame clauses

 $\begin{array}{ll} (o^{i} \wedge v^{i-1} \wedge \neg v^{i}) \to \delta^{i-1} & \text{for all } 1 \leq i \leq T, \ o \in O, \ v \in V \\ (o^{i} \wedge \neg v^{i-1} \wedge v^{i}) \to \alpha^{i-1} & \text{for all } 1 \leq i \leq T, \ o \in O, \ v \in V \end{array}$

Solution:

Parallel SAT Formula: Frame Clauses positive and negative frame clauses: $(v^{i-1} \wedge \neg v^{i}) \rightarrow ((o_{1}^{i} \wedge \delta_{o_{1}}^{i-1}) \vee \cdots \vee (o_{n}^{i} \wedge \delta_{o_{n}}^{i-1}))$ for all $1 \le i \le T$, $v \in V$ $(\neg v^{i-1} \wedge v^{i}) \rightarrow ((o_{1}^{i} \wedge o_{n}^{i-1}) \vee \cdots \vee (o_{n}^{i} \wedge o_{n}^{i-1}))$

$$(\neg v'^{-1} \land v') \rightarrow ((o'_1 \land \alpha'^{-1}_{o_1}) \lor \cdots \lor (o'_n \land \alpha'^{-1}_{o_n}))$$
for all $1 \le i \le T, v \in V$

where $\alpha_o = effcond(v, eff(o)), \ \delta_o = effcond(\neg v, eff(o)), \ O = \{o_1, \dots, o_n\}.$

For STRIPS, these are in clause form.

M. Helmert, G. Röger (Universität Basel)

October 11, 2023 17 / 19

Summan

C5. SAT Planning: Parallel Encoding

Summary

As a rule of thumb, SAT solvers generally perform better on formulas with fewer variables.

Planning and Optimization

- Parallel encodings reduce the number of variables by shortening the horizon needed to solve a planning task.
- Parallel encodings replace the constraint that operators are not applied concurrently by the constraint that conflicting operators are not applied concurrently.
- To make parallelism possible, the frame clauses also need to be adapted.

C5. SAT Planning: Parallel Encoding			Summary
C5.3 Summa	ary		
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	October 11, 2023	18 / 1