Planning and Optimization

C4. SAT Planning: Core Idea and Sequential Encoding

Malte Helmert and Gabriele Röger

Universität Basel
October 11, 2023

Content of this Course

Introduction

SAT Solvers

- SAT solvers (algorithms that find satisfying assignments to CNF formulas) are one of the major success stories in solving hard combinatorial problems.
- Can we leverage them for classical planning?
\rightsquigarrow SAT planning (a.k.a. planning as satisfiability)
background on SAT Solvers:
\rightsquigarrow Foundations of Artificial Intelligence Course, Ch. 31-32

Complexity Mismatch

- The SAT problem is NP-complete, while PlanEx is PSPACE-complete.
\rightsquigarrow one-shot polynomial reduction from PlanEx to SAT not possible (unless NP $=$ PSPACE)

Solution: Iterative Deepening

■ We can generate a propositional formula that tests if task Π has a plan with horizon (length bound) T in time $O\left(\|\Pi\|^{k} \cdot T\right)(\rightsquigarrow$ pseudo-polynomial reduction).
■ Use as building block of algorithm that probes increasing horizons (a bit like IDA*).
■ Can be efficient if there exist plans that are not excessively long.

SAT Planning: Main Loop

basic SAT Planning algorithm:

SAT Planning

def satplan(П):
for $T \in\{0,1,2, \ldots\}$:
$\varphi:=$ build_sat_formula(Π, T)
$I=\operatorname{sat}$ _solver $(\varphi) \quad \triangleright$ returns a model or none
if $/$ is not none:
return extract_plan($\Pi, T, I)$
Termination criterion for unsolvable tasks?

Formula Overview

SAT Formula: CNF?

■ SAT solvers require conjunctive normal form (CNF), i.e., formulas expressed as collection of clauses.

- We will make sure that our SAT formulas are in CNF when our input is a STRIPS task.
- We do allow fully general propositional tasks, but then the formula may need additional conversion to CNF.

SAT Formula: Variables

- given propositional planning task $\Pi=\langle V, I, O, \gamma\rangle$
- given horizon $T \in \mathbb{N}_{0}$

Variables of the SAT Formula

- propositional variables v^{i} for all $v \in V, 0 \leq i \leq T$ encode state after i steps of the plan
- propositional variables o^{i} for all $o \in O, 1 \leq i \leq T$ encode operator(s) applied in i-th step of the plan

Formulas with Time Steps

Definition (Time-Stamped Formulas)

Let φ be a propositional logic formula over the variables V. Let $0 \leq i \leq T$.

We write φ^{i} for the formula obtained from φ by replacing each $v \in V$ with v^{i}.

Example: $((a \wedge b) \vee \neg c)^{3}=\left(a^{3} \wedge b^{3}\right) \vee \neg c^{3}$

SAT Formula: Motivation

We want to express a formula whose models are exactly the plans/traces with T steps.

For this, the formula must express four things:

- The variables $v^{0}(v \in V)$ define the initial state.
- The variables $v^{\top}(v \in V)$ define a goal state.

■ We select exactly one operator variable $o^{i}(o \in O)$ for each time step $1 \leq i \leq T$.

- If we select o^{i}, then variables v^{i-1} and $v^{i}(v \in V)$ describe a state transition from the $(i-1)$-th state of the plan to the i-th state of the plan (that uses operator o).
The final formula is the conjunction of all these parts.

Initial State, Goal, Operator Selection

SAT Formula: Initial State

SAT Formula: Initial State

initial state clauses:

- $v^{0} \quad$ for all $v \in V$ with $I(v)=\mathbf{T}$
- $\neg v^{0} \quad$ for all $v \in V$ with $I(v)=\mathbf{F}$

SAT Formula: Goal

SAT Formula: Goal

goal clauses:

- γ^{T}

For STRIPS, this is a conjunction of unit clauses.
For general goals, this may not be in clause form.

SAT Formula: Operator Selection

Let $O=\left\{o_{1}, \ldots, o_{n}\right\}$.

SAT Formula: Operator Selection

operator selection clauses:

- $o_{1}^{i} \vee \cdots \vee o_{n}^{i} \quad$ for all $1 \leq i \leq T$
operator exclusion clauses:
- $\neg o_{j}^{i} \vee \neg o_{k}^{i}$
for all $1 \leq i \leq T, 1 \leq j<k \leq n$

Transitions

SAT Formula: Transitions

We now get to the interesting/challenging bit: encoding the transitions.

Key observations: if we apply operator o at time i,
■ its precondition must be satisfied at time $i-1$:
$o^{i} \rightarrow \operatorname{pre}(o)^{i-1}$
■ variable v is true at time i iff its regression is true at $i-1$: $o^{i} \rightarrow\left(v^{i} \leftrightarrow \operatorname{regr}(v, \operatorname{eff}(o))^{i-1}\right)$

Question: Why $\operatorname{regr}(v, \operatorname{eff}(o))$, not $\operatorname{regr}(v, o)$?

Simplifications and Abbreviations

- Let us pick the last formula apart to understand it better (and also get a CNF representation along the way).
- Let us call the formula τ ("transition"):

$$
\tau=o^{i} \rightarrow\left(v^{i} \leftrightarrow \operatorname{regr}(v, \operatorname{eff}(o))^{i-1}\right)
$$

■ First, some abbreviations:

- Let $e=\operatorname{eff}(o)$.

■ Let $\rho=\operatorname{regr}(v, e)$ ("regression"). We have $\rho=\operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$.

- Let $\alpha=\operatorname{effcond(v,e)\text {("added").}}$

■ Let $\delta=\operatorname{effcond}(\neg v, e)$ ("deleted").
$\rightsquigarrow \tau=o^{i} \rightarrow\left(v^{i} \leftrightarrow \rho^{i-1}\right)$ with $\rho=\alpha \vee(v \wedge \neg \delta)$

Picking it Apart (1)

Reminder: $\tau=o^{i} \rightarrow\left(v^{i} \leftrightarrow \rho^{i-1}\right)$ with $\rho=\alpha \vee(v \wedge \neg \delta)$

$$
\begin{aligned}
\tau & =o^{i} \rightarrow\left(v^{i} \leftrightarrow \rho^{i-1}\right) \\
& \equiv o^{i} \rightarrow\left(\left(v^{i} \rightarrow \rho^{i-1}\right) \wedge\left(\rho^{i-1} \rightarrow v^{i}\right)\right) \\
& \equiv \underbrace{\left(o^{i} \rightarrow\left(v^{i} \rightarrow \rho^{i-1}\right)\right)}_{\tau_{1}} \wedge \underbrace{\left(o^{i} \rightarrow\left(\rho^{i-1} \rightarrow v^{i}\right)\right)}_{\tau_{2}}
\end{aligned}
$$

\rightsquigarrow consider this two separate constraints τ_{1} and τ_{2}

Picking it Apart (2)

Reminder: $\tau_{1}=o^{i} \rightarrow\left(v^{i} \rightarrow \rho^{i-1}\right)$ with $\rho=\alpha \vee(v \wedge \neg \delta)$

$$
\begin{aligned}
\tau_{1} & =o^{i} \rightarrow\left(v^{i} \rightarrow \rho^{i-1}\right) \\
& \equiv o^{i} \rightarrow\left(\neg \rho^{i-1} \rightarrow \neg v^{i}\right) \\
& \equiv\left(o^{i} \wedge \neg \rho^{i-1}\right) \rightarrow \neg v^{i} \\
& \equiv\left(o^{i} \wedge \neg\left(\alpha^{i-1} \vee\left(v^{i-1} \wedge \neg \delta^{i-1}\right)\right)\right) \rightarrow \neg v^{i} \\
& \equiv\left(o^{i} \wedge\left(\neg \alpha^{i-1} \wedge\left(\neg v^{i-1} \vee \delta^{i-1}\right)\right)\right) \rightarrow \neg v^{i} \\
& \equiv \underbrace{\left(\left(o^{i} \wedge \neg \alpha^{i-1} \wedge \neg v^{i-1}\right) \rightarrow \neg v^{i}\right)}_{\tau_{11}} \wedge \underbrace{\left(\left(o^{i} \wedge \neg \alpha^{i-1} \wedge \delta^{i-1}\right) \rightarrow \neg v^{i}\right)}_{\tau_{12}}
\end{aligned}
$$

\rightsquigarrow consider this two separate constraints τ_{11} and τ_{12}

Interpreting the Constraints (1)

Can we give an intuitive description of τ_{11} and τ_{12} ?

Interpreting the Constraints (1)

Can we give an intuitive description of τ_{11} and τ_{12} ?
\rightsquigarrow Yes!

- $\tau_{11}=\left(o^{i} \wedge \neg \alpha^{i-1} \wedge \neg v^{i-1}\right) \rightarrow \neg v^{i}$
"When applying o, if v is false and o does not add it, it remains false."
- called negative frame clause
- in clause form: $\neg 0^{i} \vee \alpha^{i-1} \vee v^{i-1} \vee \neg v^{i}$
- $\tau_{12}=\left(o^{i} \wedge \neg \alpha^{i-1} \wedge \delta^{i-1}\right) \rightarrow \neg v^{i}$
"When applying o, if o deletes v and does not add it, it is false afterwards." (Note the add-after-delete semantics.)
- called negative effect clause
- in clause form: $\neg 0^{i} \vee \alpha^{i-1} \vee \neg \delta^{i-1} \vee \neg \vee^{i}$

For STRIPS tasks, these are indeed clauses. (And in general?)

Picking it Apart (3)

Almost done!

Picking it Apart (3)

Almost done!
Reminder: $\tau_{2}=o^{i} \rightarrow\left(\rho^{i-1} \rightarrow v^{i}\right)$ with $\rho=\alpha \vee(v \wedge \neg \delta)$

$$
\begin{aligned}
\tau_{2} & =o^{i} \rightarrow\left(\rho^{i-1} \rightarrow v^{i}\right) \\
& \equiv\left(o^{i} \wedge \rho^{i-1}\right) \rightarrow v^{i} \\
& \equiv\left(o^{i} \wedge\left(\alpha^{i-1} \vee\left(v^{i-1} \wedge \neg \delta^{i-1}\right)\right)\right) \rightarrow v^{i} \\
& \equiv \underbrace{\left(\left(o^{i} \wedge \alpha^{i-1}\right) \rightarrow v^{i}\right)}_{\tau_{21}} \wedge \underbrace{\left(\left(o^{i} \wedge v^{i-1} \wedge \neg \delta^{i-1}\right) \rightarrow v^{i}\right)}_{\tau_{22}}
\end{aligned}
$$

\rightsquigarrow consider this two separate constraints τ_{21} and τ_{22}

Interpreting the Constraints (2)

How about an intuitive description of τ_{21} and τ_{22} ?

Interpreting the Constraints (2)

How about an intuitive description of τ_{21} and τ_{22} ?

- $\tau_{21}=\left(o^{i} \wedge \alpha^{i-1}\right) \rightarrow v^{i}$
"When applying o, if o adds v, it is true afterwards."
- called positive effect clause

■ in clause form: $\neg 0^{i} \vee \neg \alpha^{i-1} \vee v^{i}$

- $\tau_{22}=\left(o^{i} \wedge v^{i-1} \wedge \neg \delta^{i-1}\right) \rightarrow v^{i}$
"When applying o, if v is true and o does not delete it, it remains true."
- called positive frame clause

■ in clause form: $\neg 0^{i} \vee \neg v^{i-1} \vee \delta^{i-1} \vee v^{i}$
For STRIPS tasks, these are indeed clauses. (But not in general.)

SAT Formula: Transitions

SAT Formula: Transitions

precondition clauses:

$$
\text { - } \neg 0^{i} \vee \operatorname{pre}(o)^{i-1} \quad \text { for all } 1 \leq i \leq T, o \in O
$$

positive and negative effect clauses:

$$
\begin{array}{ll}
\neg O^{i} \vee \neg \alpha^{i-1} \vee v^{i} & \text { for all } 1 \leq i \leq T, o \in O, v \in V \\
& \neg o^{i} \vee \alpha^{i-1} \vee \neg \delta^{i-1} \vee \neg v^{i}
\end{array} \quad \text { for all } 1 \leq i \leq T, o \in O, v \in V
$$ positive and negative frame clauses:

- $\neg 0^{i} \vee \neg v^{i-1} \vee \delta^{i-1} \vee v^{i} \quad$ for all $1 \leq i \leq T, o \in O, v \in V$

■ $\neg 0^{i} \vee \alpha^{i-1} \vee v^{i-1} \vee \neg v^{i} \quad$ for all $1 \leq i \leq T, o \in O, v \in V$ where $\alpha=\operatorname{effcond}(v, \operatorname{eff}(o)), \delta=\operatorname{effcond}(\neg v, \operatorname{eff}(o))$.

For STRIPS, all except the precondition clauses are in clause form.
The precondition clauses are easily convertible to CNF (one clause $\neg 0^{i} \vee v^{i-1}$ for each precondition atom v of o).

Summary

Summary

■ SAT planning (planning as satisfiability) expresses a sequence of bounded-horizon planning tasks as SAT formulas.

- Plans can be extracted from satisfying assignments; unsolvable tasks are challenging for the algorithm.
■ For each time step, there are propositions encoding which state variables are true and which operators are applied.
- We describe a basic sequential encoding where one operator is applied at every time step.
- The encoding produces a CNF formula for STRIPS tasks.
- The encoding follows naturally (with some work) from using regression to link state variables in adjacent time steps.

