Planning and Optimization
C4. SAT Planning: Core Idea and Sequential Encoding

Malte Helmert and Gabriele Röger
Universität Basel
October 11, 2023
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization
October 11, 2023 - C4. SAT Planning: Core Idea and Sequential Encoding

C4.1 Introduction
C4.2 Formula Overview
C4.3 Initial State, Goal, Operator Selection
C4.4 Transitions
C4.5 Summary

C4.1 Introduction

SAT Solvers

- SAT solvers (algorithms that find satisfying assignments to CNF formulas) are one of the major success stories in solving hard combinatorial problems.
- Can we leverage them for classical planning?
\rightsquigarrow SAT planning (a.k.a. planning as satisfiability)
background on SAT Solvers:
\rightsquigarrow Foundations of Artificial Intelligence Course, Ch. 31-32
- The SAT problem is NP-complete, while PlanEx is PSPACE-complete.
\rightsquigarrow one-shot polynomial reduction from PLANEx to SAT not possible (unless NP $=$ PSPACE)

Solution: Iterative Deepening

- We can generate a propositional formula that tests if task Π has a plan with horizon (length bound) T in time $O\left(\|\Pi\|^{k} \cdot T\right)(\rightsquigarrow$ pseudo-polynomial reduction).
- Use as building block of algorithm that probes increasing horizons (a bit like IDA*).
- Can be efficient if there exist plans that are not excessively long.

C4. SAT Planning: Core Idea and Sequential Encoding SAT Planning: Main Loop			
basic SAT Planning algorithm:			
```SAT Planning def satplan(П): for }T\in{0,1,2,\ldots} \varphi : = ~ b u i l d _ s a t _ f o r m u l a ( П , T ) I=sat_solver(\varphi) \triangleright returns a model or none if l is not none: return extract_plan( }\Pi,T,I```			
Termination criterion for unsolvable tasks?			
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	October 11, 2023	$8 / 28$

## C4.2 Formula Overview

- given propositional planning task $\Pi=\langle V, I, O, \gamma\rangle$
- given horizon $T \in \mathbb{N}_{0}$

Variables of the SAT Formula

- propositional variables $v^{i}$ for all $v \in V, 0 \leq i \leq T$ encode state after $i$ steps of the plan
$\rightarrow$ propositional variables $o^{i}$ for all $o \in O, 1 \leq i \leq T$ encode operator(s) applied in $i$-th step of the plan

SAT Formula: CNF?

- SAT solvers require conjunctive normal form (CNF), i.e., formulas expressed as collection of clauses.
- We will make sure that our SAT formulas are in CNF when our input is a STRIPS task.
- We do allow fully general propositional tasks, but then the formula may need additional conversion to CNF
M. Helmert. G. Röger (Universität Basel)

Planning and Optimization

C4. SAT Planning: Core Idea and Sequential Encoding Formulas with Time Steps		
Definition (Time-Stamped Formulas)   Let $\varphi$ be a propositional logic formula over th Let $0 \leq i \leq T$.   We write $\varphi^{i}$ for the formula obtained from $\varphi$ by replacing each $v \in V$ with $v^{i}$.	$\text { les } V \text {. }$	
Example: $((a \wedge b) \vee \neg c)^{3}=\left(a^{3} \wedge b^{3}\right) \vee \neg c^{3}$		
M. Helmert, G. Röger (Universität Basel) $\quad$ Planning and Optimization $\quad$ October 11, 2023 12 / 28		

We want to express a formula whose models are exactly the plans/traces with $T$ steps.

For this, the formula must express four things:

- The variables $v^{0}(v \in V)$ define the initial state
- The variables $v^{T}(v \in V)$ define a goal state.
- We select exactly one operator variable $o^{i}(o \in O)$ for each time step $1 \leq i \leq T$.
- If we select $o^{i}$, then variables $v^{i-1}$ and $v^{i}(v \in V)$ describe a state transition from the $(i-1)$-th state of the plan to the $i$-th state of the plan (that uses operator $o$ ).
The final formula is the conjunction of all these parts.


## C4.3 Initial State, Goal, Operator Selection

| C4. SAT Planning: Core Idea and Sequential Encoding |
| :--- | :--- |
| SAT Formula: Goal |
| SAT Formula: Goal |
| goal clauses: |
| For STRIPS, this is a conjunction of unit clauses. |
| For general goals, this may not be in clause form. |
| M. Helmert, G. Röger (Universität Basel) |

## SAT Formula: Operator Selection

Let $O=\left\{o_{1}, \ldots, o_{n}\right\}$.
SAT Formula: Operator Selection
C4.4 Transitions
operator selection clauses:

- $o_{1}^{i} \vee \cdots \vee o_{n}^{i} \quad$ for all $1 \leq i \leq T$
operator exclusion clauses:
- $\neg 0_{j}^{i} \vee \neg 0_{k}^{i} \quad$ for all $1 \leq i \leq T, 1 \leq j<k \leq n$

Simplifications and Abbreviations

- Let us pick the last formula apart to understand it better (and also get a CNF representation along the way).
- Let us call the formula $\tau$ ("transition"):
$\tau=o^{i} \rightarrow\left(v^{i} \leftrightarrow \operatorname{regr}(v, \operatorname{eff}(o))^{i-1}\right)$.
- First, some abbreviations:
- Let $e=\operatorname{eff}(o)$.
- Let $\rho=\operatorname{regr}(v, e)$ ("regression").

We have $\rho=\operatorname{effcond}(v, e) \vee(v \wedge \neg e f f c o n d(\neg v, e))$.

- Let $\alpha=\operatorname{effcond(v,e)("added").~}$
- Let $\delta=\operatorname{effcond}(\neg v, e)$ ("deleted").
$\rightsquigarrow \tau=o^{i} \rightarrow\left(v^{i} \leftrightarrow \rho^{i-1}\right)$ with $\rho=\alpha \vee(v \wedge \neg \delta)$
We now get to the interesting/challenging bit: encoding the transitions.

Key observations: if we apply operator $o$ at time $i$,

- its precondition must be satisfied at time $i-1$ :
$o^{i} \rightarrow \operatorname{pre}(o)^{i-1}$
- variable $v$ is true at time $i$ iff its regression is true at $i-1$ : $o^{i} \rightarrow\left(v^{i} \leftrightarrow \operatorname{regr}(v, \operatorname{eff}(o))^{i-1}\right)$

Question: Why $\operatorname{regr}(v, \operatorname{eff}(o))$, not $\operatorname{regr}(v, o)$ ?

Picking it Apart (1)

$$
\text { Reminder: } \begin{aligned}
\tau & =o^{i} \rightarrow\left(v^{i} \leftrightarrow \rho^{i-1}\right) \text { with } \rho=\alpha \vee(v \wedge \neg \delta) \\
\tau & =o^{i} \rightarrow\left(v^{i} \leftrightarrow \rho^{i-1}\right) \\
& \equiv o^{i} \rightarrow\left(\left(v^{i} \rightarrow \rho^{i-1}\right) \wedge\left(\rho^{i-1} \rightarrow v^{i}\right)\right) \\
& \equiv \underbrace{\left(o^{i} \rightarrow\left(v^{i} \rightarrow \rho^{i-1}\right)\right)}_{\tau_{1}} \wedge \underbrace{\left(o^{i} \rightarrow\left(\rho^{i-1} \rightarrow v^{i}\right)\right)}_{\tau_{2}}
\end{aligned}
$$

$\rightsquigarrow$ consider this two separate constraints $\tau_{1}$ and $\tau_{2}$

C4. SAT Planning: Core Idea and Sequential Encoding	Transitions
Interpreting the Constraints (1)	

Picking it Apart (2)

Reminder: $\tau_{1}=o^{i} \rightarrow\left(v^{i} \rightarrow \rho^{i-1}\right)$ with $\rho=\alpha \vee(v \wedge \neg \delta)$

$$
\begin{aligned}
\tau_{1} & =o^{i} \rightarrow\left(v^{i} \rightarrow \rho^{i-1}\right) \\
& \equiv o^{i} \rightarrow\left(\neg \rho^{i-1} \rightarrow \neg v^{i}\right) \\
& \equiv\left(o^{i} \wedge \neg \rho^{i-1}\right) \rightarrow \neg v^{i} \\
& \equiv\left(o^{i} \wedge \neg\left(\alpha^{i-1} \vee\left(v^{i-1} \wedge \neg \delta^{i-1}\right)\right)\right) \rightarrow \neg v^{i} \\
& \equiv\left(o^{i} \wedge\left(\neg \alpha^{i-1} \wedge\left(\neg v^{i-1} \vee \delta^{i-1}\right)\right)\right) \rightarrow \neg v^{i} \\
& \equiv \underbrace{\left(\left(o^{i} \wedge \neg \alpha^{i-1} \wedge \neg v^{i-1}\right) \rightarrow \neg v^{i}\right)}_{\tau_{11}} \wedge \underbrace{\left(\left(o^{i} \wedge \neg \alpha^{i-1} \wedge \delta^{i-1}\right) \rightarrow \neg v^{i}\right)}_{\tau_{12}}
\end{aligned}
$$

$\rightsquigarrow$ consider this two separate constraints $\tau_{11}$ and $\tau_{12}$
M. Helmert, G. Röger (Universität Basel) Planning and Optimization

Picking it Apart (3)

## Almost done!

Reminder: $\tau_{2}=o^{i} \rightarrow\left(\rho^{i-1} \rightarrow v^{i}\right)$ with $\rho=\alpha \vee(v \wedge \neg \delta)$

$$
\begin{aligned}
\tau_{2} & =o^{i} \rightarrow\left(\rho^{i-1} \rightarrow v^{i}\right) \\
& \equiv\left(o^{i} \wedge \rho^{i-1}\right) \rightarrow v^{i} \\
& \equiv\left(o^{i} \wedge\left(\alpha^{i-1} \vee\left(v^{i-1} \wedge \neg \delta^{i-1}\right)\right)\right) \rightarrow v^{i} \\
& \equiv \underbrace{\left(\left(o^{i} \wedge \alpha^{i-1}\right) \rightarrow v^{i}\right)}_{\tau_{21}} \wedge \underbrace{\left(\left(o^{i} \wedge v^{i-1} \wedge \neg \delta^{i-1}\right) \rightarrow v^{i}\right)}_{\tau_{22}}
\end{aligned}
$$

$\rightsquigarrow$ consider this two separate constraints $\tau_{21}$ and $\tau_{22}$

For STRIPS tasks, these are indeed clauses. (And in general?)

SAT Formula: Transitions
precondition clauses:

$$
\triangleright \neg 0^{i} \vee \operatorname{pre}(o)^{i-1} \quad \text { for all } 1 \leq i \leq T, o \in O
$$

positive and negative effect clauses:
$-\neg 0^{i} \vee \neg \alpha^{i-1} \vee v^{i} \quad$ for all $1 \leq i \leq T, o \in O, v \in V$

- $\neg 0^{i} \vee \alpha^{i-1} \vee \neg \delta^{i-1} \vee \neg v^{i}$ for all $1 \leq i \leq T$, $o \in O, v \in V$
positive and negative frame clauses:
$-\neg 0^{i} \vee \neg v^{i-1} \vee \delta^{i-1} \vee v^{i} \quad$ for all $1 \leq i \leq T, o \in O, v \in V$
- $\neg 0^{i} \vee \alpha^{i-1} \vee v^{i-1} \vee \neg v^{i} \quad$ for all $1 \leq i \leq T, o \in O, v \in V$
where $\alpha=\operatorname{effcond}(v, \operatorname{eff}(o)), \delta=\operatorname{effcond}(\neg v, \operatorname{eff}(o))$.
For STRIPS, all except the precondition clauses are in clause form.
The precondition clauses are easily convertible to CNF (one clause $\neg 0^{i} \vee v^{i-1}$ for each precondition atom $v$ of $o$ ).

C4. SAT Planning: Core Idea and Sequential Encoding	Summary

Summary

- SAT planning (planning as satisfiability) expresses a sequence of bounded-horizon planning tasks as SAT formulas.
- Plans can be extracted from satisfying assignments; unsolvable tasks are challenging for the algorithm.
- For each time step, there are propositions encoding which state variables are true and which operators are applied.
- We describe a basic sequential encoding where one operator is applied at every time step.
- The encoding produces a CNF formula for STRIPS tasks.
- The encoding follows naturally (with some work) from using regression to link state variables in adjacent time steps.

