Planning and Optimization

C3. General Regression

Malte Helmert and Gabriele Roger

Universitat Basel

October 9, 2023



Content of this Course

—{ Prelude ‘

—{ Foundations ‘

-7—{ Delete Relaxation ‘

—{ Abstraction ‘

— Critical Paths |

—{ Constraints ‘




State Variables R Formulas Through Effects R Formulas Through Operators Summar

Regression for General Planning Tasks

m With disjunctions and conditional effects, things become more
tricky. How to regress a V(b A ¢) with respect to (q,d > b)?

m In this chapter, we show how to regress general sets of states
through general operators.

m We extensively use the idea of representing sets of states
as formulas.



Regressing State Variables

®0000000

Regressing State Variables



Regressing State Variables R Formulas Through Effects R Formulas Through Operators Summar

0O@000000

Regressing State Variables: Motivation

Key question for general regression:
m Assume we are applying an operator with effect e.

m What must be true in the predecessor state for propositional
state variable v to be true in the successor state?

If we can answer this question, a general definition of regression
is only a small additional step.



Regressing State Variables R Formulas Through Effects R Formulas Through Operators Summar
00®00000 o ofe 00

Regressing State Variables: Key Idea

Assume we are in state s and apply effect e
to obtain successor state s’.

Propositional state variable v is true in s’ iff
m effect e makes it true, or

m it remains true, i.e., it is true in s and not made false by e.



Regressing State Variables 3 g Formulas Through Effects R Formulas Through Operators Summar

[e]e]e] le]elele)

Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)

Let e be an effect of a propositional planning task,
and let v be a propositional state variable.

The regression of v through e, written regr(v, e),
is defined as the following logical formula:

regr(v, e) = effcond(v, e) V (v A —effcond(—v, €)).

Does this capture add-after-delete semantics correctly?



Regressing State Variables ormulas Through Effects R Formulas Through Operators
00008000 5 I 00

Regressing State Variables: Example

Lete=(b>a)A(c>—-a)AbA—d.

v | regr(v,e)
a|bv(an-c)
b|TV(bA-L)=T
c

d

Lv(cn-Ll)=c
_L\/(d/\—\T)EJ_

Reminder: regr(v, e) = effcond(v, e) V (v A —effcond(—v, e))



Regressing State Variables
00000000

Regressing State Variables: Correctness (1)

Lemma (Correctness of regr(v, e))

Let s be a state, e be an effect and v be a state variable
of a propositional planning task.

Then s |= regr(v, e) iff s[e] = v.




Regressing State Variables Regr Formulas Through Effects Regressing Formulas Through Operators Summary

[e]e]e]ee]e] Jo)

Regressing State Variables: Correctness (2)

(=): We know s = regr(v, e), and hence
s = effcond(v, e) V (v A —effcond(—v, €)).

Do a case analysis on the two disjuncts.




Regressing State Variables Regressing Formulas Through Effects Re g Formulas Through Operators Summary

[e]e]e]ee]e] Jo)

Regressing State Variables: Correctness (2)

(=): We know s = regr(v, e), and hence
s = effcond(v, e) V (v A —effcond(—v, €)).

Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v, e).
Then s[e] |= v by the first case in the definition of s[e] (Ch. B3).




Regressing State Variables R ng Formulas Through Effects R g Formulas Through Operators Summary

[e]e]e]ee]e] Jo)

Regressing State Variables: Correctness (2)

(=): We know s = regr(v, e), and hence
s = effcond(v, e) V (v A —effcond(—v, €)).

Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v, e).
Then s[e] |= v by the first case in the definition of s[e] (Ch. B3).

Case 2: s = (v A —effcond(—v, €)).

Then s = v and s [~ effcond(—v, e).

We may additionally assume s [~ effcond(v, e)

because otherwise we can apply Case 1 of this proof.
Then s[e] = v by the third case in the definition of s[e].

V.




Regressing State Variables 3 g Formulas Through Effects R Formulas Through Operators

0000000

Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].




Regressing State Variables 3 g Formulas Through Effects R Formulas Through Operators

0000000

Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).




Regressing State Variables Regressing Formulas Through Effects Re g Formulas Through Operators Summary

0000000

Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).




Regressing State Variables Regressing Formulas Through Effects Re g Formulas Through Operators Summary

0000000

Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).

m From the first conjunct, we get s = —effcond(v, e)
and hence s [~ effcond(v, e).




Regressing State Variables Regr Formulas Through Effects Regressing Formulas Through Operators Summary

0000000

Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).

m From the first conjunct, we get s = —effcond(v, e)
and hence s [~ effcond(v, e).

m From the second conjunct, we get s |= —v V effcond(—v, e).




Regressing State Variables Regressing Formulas Through Effects e g Formulas Through Operators Summary

0000000

Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).

m From the first conjunct, we get s = —effcond(v, e)
and hence s [~ effcond(v, e).

m From the second conjunct, we get s |= —v V effcond(—v, e).

m Case 1: s = —wv. Then v is false before applying e
and remains false, so s[e] b~ v.




Regressing State Variables Regressing Formulas Through Effects g Formulas Through Operators Summary

0000000

Regressing State Variables: Correctness (3)

Proof (continued).

(<=): Proof by contraposition.
We show that if regr(v, e) is false in s, then v is false in s[e].

m By prerequisite, s [~ effcond(v, e) V (v A —effcond(—v, €)).
m Hence s = —effcond(v, e) A (v V effcond(—v, €)).
m From the first conjunct, we get s = —effcond(v, e)

and hence s [~ effcond(v, e).
m From the second conjunct, we get s |= —v V effcond(—v, e).
m Case 1: s = —wv. Then v is false before applying e

and remains false, so s[e] b~ v.

m Case 2: s |= effcond(—v, e). Then v is deleted by e
and not simultaneously added, so s[e] }~= v.




R ing Formulas Through Effects

egressir
©000000

Regressing Formulas Through Effects



State Variables Regressing Formulas Through Effects Formulas Through Operators
) 0000000

Summar

Regressing Formulas Through Effects: Idea

m We can now generalize regression from state variables
to general formulas over state variables.

m The basic idea is to replace every occurrence of every state
variable v by regr(v, e) as defined in the previous section.

m The following definition makes this more formal.



ate Variables Regressing Formulas Through Effects R Formulas Through Operators Summary

[e]e] lele]ele)

Regressmg Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect,
and let ¢ be a formula over propositional state variables.

The regression of ¢ through e, written regr(e, €),
is defined as the following logical formula:

regr(T,e) =
regr(L,e) =
regr(v,e) = fcond(v e) V (v A —effcond(—v, e))
regr(—, ) = —regr(¢, e)
regr(v V x, e) = regr(1, e) V regr(x; €)
regr(y A x, e) = regr(y), e) A regr(x; e).




sing State Variables Regressing Formulas Through Effects R Formulas Through Operators Summary
o 0000000 I 00

Regressing Formulas Through Effects: Example

Let e=(b>a)A(c> —-a)AbA—d.
Recall:

m regr(a,e) = bV (a A —c)

m regr(b,e) =T

m regr(c,e) =c

m regr(d,e) = L
We get:

regr((aVd)A(cVvd),e)=((bV(aA—c)VL)A(cV L)
(bv(an-c))Nc
bAc




Regressing Formulas Through Effects
0000e00

Regressing Formulas Through Effects: Correctness (1)

Lemma (Correctness of regr(¢p, €))

Let ¢ be a logical formula, e an effect and s a state
of a propositional planning task.

Then s |= regr(p, e) iff s[e] E ¢.




State Variables Regressing Formulas Through Effects R Formulas Through Operators Summar

[e]e]e]e]e] o)

Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.




State Variables Regressing Formulas Through Effects R Formulas Through Operators

[e]e]e]e]e] o)

Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.

Induction hypothesis: s = regr(v, e) iff s[e] = ¢
for all proper subformulas ¥ of .




State Variables Regressing Formulas Through Effects Re, g Formulas Through Operators Summary

[e]e]e]e]e] o)

Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.

Induction hypothesis: s = regr(v, e) iff s[e] = ¢
for all proper subformulas ¥ of .

Base case p = T:
We have regr(T,e) =T, and s = T iff s[e] = T is correct.




State Variables Regressing Formulas Through Effects R ng Formulas Through Operators

[e]e]e]e]e] o)

Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.

Induction hypothesis: s = regr(v, e) iff s[e] = ¢
for all proper subformulas ¥ of .

Base case p = T:
We have regr(T,e) =T, and s = T iff s[e] = T is correct.

Base case p = L:
We have regr(L,e) = L, and s |= L iff s[e] = L is correct.




State Variables Regressing Formulas Through Effects R ng Formulas Through Operators

[e]e]e]e]e] o)

Regressing Formulas Through Effects: Correctness (2)

The proof is by structural induction on ¢.

Induction hypothesis: s = regr(v, e) iff s[e] = ¢
for all proper subformulas ¥ of .

Base case p = T:
We have regr(T,e) =T, and s = T iff s[e] = T is correct.
Base case p = L:
We have regr(L,e) = L, and s |= L iff s[e] = L is correct.
Base case p = v:

We have s = regr(v, e) iff s[e] = v from the previous lemma.




State Variables Regressing Formulas Through Effects > Formulas Through Operators

O00000e

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case ¢ = —):

s = regr(—, e) iff s = —regr(v), e)
iff s [~ regr(v), e)
iff sfe]
iff sfe] E ¢




State Variables Regressing Formulas Through Effects R g Formulas Through Operators Summary

O00000e

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case ¢ = —):

s = regr(—, e) iff s = —regr(v), e)
iff s [~ regr(v), e)
iff sfe]
iff sfe] E ¢

Inductive case p =¥ V x:

s = regr(v V x, e) iff s |= regr(v, e) V regr(x, €)
iff s |= regr(1), e) or s |= regr(x, €)
iff s[e] = v or s[e] E x
iff sfe] =E¢ Vv x




State Variables Regressing Formulas Through Effects R g Formulas Through Operators Summary

O00000e

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case ¢ = —):

s = regr(—, e) iff s = —regr(v), e)
iff s [~ regr(v), e)
iff sfe]
iff sfe] E ¢
Inductive case p =¥ V x:
s = regr(v V x, e) iff s |= regr(v, e) V regr(x, e)
iff s |= regr(1), e) or s |= regr(x, €)
iff s[e] = v or s[e] E x
iff sfe] =E¢ Vv x
Inductive case p = ¥ A :

Like previous case, replacing “V" by “A”
and replacing “or” by “and”. Ol




Regressing Formulas Through Operators

@000000

Regressing Formulas Through
Operators



0@00000

State Variables R Formulas Through Effects Regressing Formulas Through Operators St

Regressing Formulas Through Operators: Idea

m We can now regress arbitrary formulas
through arbitrary effects.

m The last missing piece is a definition of regression through
operators, describing exactly in which states s applying a
given operator o leads to a state satisfying a given formula .

m There are two requirements:

m The operator o must be applicable in the state s.
m The resulting state s[o] must satisfy ¢.



State Variables 3 g Formulas Through Effects Regressing Formulas Through Operators Summar

[e]e] le]elele)

Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator,
and let ¢ be a formula over state variables.

The regression of ¢ through o, written regr(y, o),
is defined as the following logical formula:

regr(p, 0) = pre(o) A regr(p, eff(0)). )




Regressing Formulas Through Operators
000000

Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of regr(p, 0))

Let ¢ be a logical formula, o an operator and s a state
of a propositional planning task.

Then s = regr(p, 0) iff o is applicable in s and s[o] = ¢.




State Variables Regr: Formulas Through Effects Regressing Formulas Through Operators Summar

[e]e]ele] lele)

Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(p, 0) = pre(o) A regr(p, eff{0))

Case 1: s = pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(ip, e) iff s[e] = ¢, where e = eff{0).
This was proved in the previous lemma.




State Variables Regrt Formulas Through Effects Regressing Formulas Through Operators Summary

[e]e]ele] lele)

Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(p, 0) = pre(o) A regr(p, eff{0))
Case 1: s = pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(ip, e) iff s[e] = ¢, where e = eff{0).

This was proved in the previous lemma.

Case 2: s [~ pre(o).

Then s [~ regr(¢, 0) and o is not applicable in s.

Hence both statements are false and therefore equivalent. O




Regressing Formulas Through Operators
0000000

Regression Examples (1)

Examples: compute regression and simplify to DNF
m regr(b, (a, b))
=an(TV(bA—-L1))
=a
m regr(bA cAd,(a,b))
an(TV(bA=L)A(LV(cA-L)A(LV(dA-L))
aNcANd
m regr(b A —c,(a, b A c))
A(TV(BA-L))A(TV(cA-L))
aNTAL
L



1g Formulas Through Effects Regressing Formulas Through Operators
0000000

Summar

Regression Examples (2)

Examples: compute regression and simplify to DNF

regr(b, (a,c > b))

an(cVv(bA-l))

aA(cVb)

(anc)Vv(anb)

regr(b, (a,(c > b) A ((d A —c) > —b)))
an(cV(bA—(dA=c)))
aN(cV(bA(—dVc)))
an(cV(bA-d)V(bAc))
aN(cV(bA—d))
(anc)V(aAnbA—d)



Summarn
0

Summary



Formulas Through Effects Formulas Through Operators Summary
o

Summary

m Regressing a propositional state variable
through an (arbitrary) operator must consider two cases:

m state variables made true (by add effects)
m state variables remaining true (by absence of delete effects)
m Regression of propositional state variables can be generalized
to arbitrary formulas ¢ by replacing each occurrence
of a state variable in ¢ by its regression.

m Regressing a formula ¢ through an operator involves
regressing ¢ through the effect and enforcing the precondition.



	Regressing State Variables
	

	Regressing Formulas Through Effects
	

	Regressing Formulas Through Operators
	

	Summary
	


