Planning and Optimization
 C3. General Regression

Malte Helmert and Gabriele Röger

Universität Basel

October 9, 2023

Content of this Course

Regression for General Planning Tasks

$■$ With disjunctions and conditional effects, things become more tricky. How to regress $a \vee(b \wedge c)$ with respect to $\langle q, d \triangleright b\rangle$?

- In this chapter, we show how to regress general sets of states through general operators.
■ We extensively use the idea of representing sets of states as formulas.

Regressing State Variables

Regressing State Variables: Motivation

Key question for general regression:

- Assume we are applying an operator with effect e.

■ What must be true in the predecessor state for propositional state variable v to be true in the successor state?

If we can answer this question, a general definition of regression is only a small additional step.

Regressing State Variables: Key Idea

Assume we are in state s and apply effect e to obtain successor state s^{\prime}.

Propositional state variable v is true in s^{\prime} iff
■ effect e makes it true, or

- it remains true, i.e., it is true in s and not made false by e.

Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)

Let e be an effect of a propositional planning task, and let v be a propositional state variable.
The regression of v through e, written $\operatorname{regr}(v, e)$, is defined as the following logical formula:

$$
\operatorname{regr}(v, e)=\operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e)) .
$$

Does this capture add-after-delete semantics correctly?

Regressing State Variables: Example

Example

Let $e=(b \triangleright a) \wedge(c \triangleright \neg a) \wedge b \wedge \neg d$.

$$
\begin{array}{l|l}
v & \operatorname{regr}(v, e) \\
\hline a & b \vee(a \wedge \neg c) \\
b & \top \vee(b \wedge \neg \perp) \equiv \top \\
c & \perp \vee(c \wedge \neg \perp) \equiv c \\
d & \perp \vee(d \wedge \neg \top) \equiv \perp
\end{array}
$$

Reminder: $\operatorname{regr}(v, e)=\operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$

Regressing State Variables: Correctness (1)

Lemma (Correctness of $\operatorname{regr}(v, e)$)
Let s be a state, e be an effect and v be a state variable of a propositional planning task.

Then $s \models r e g r(v, e)$ iff $s \llbracket e \rrbracket \models v$.

Regressing State Variables: Correctness (2)

Proof.
(\Rightarrow) : We know $s \models \operatorname{regr}(v, e)$, and hence
$s \models \operatorname{effcond}(v, e) \vee(v \wedge \neg$ effcond $(\neg v, e))$.
Do a case analysis on the two disjuncts.

Regressing State Variables: Correctness (2)

Proof.

(\Rightarrow) : We know $s \models \operatorname{regr}(v, e)$, and hence
$s \models \operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$.
Do a case analysis on the two disjuncts.
Case 1: $s \models \operatorname{effcond}(v, e)$.
Then $s \llbracket e \rrbracket \models v$ by the first case in the definition of $s \llbracket e \rrbracket$ (Ch. B3).

Regressing State Variables: Correctness (2)

Proof.

(\Rightarrow) : We know $s \models \operatorname{regr}(v, e)$, and hence $s \models \operatorname{effcond}(v, e) \vee(v \wedge \neg e f f c o n d(\neg v, e))$.
Do a case analysis on the two disjuncts.
Case 1: $s \models \operatorname{effcond}(v, e)$.
Then $s \llbracket e \rrbracket \models v$ by the first case in the definition of $s \llbracket e \rrbracket$ (Ch. B3).
Case 2: $s \models(v \wedge \neg e f f c o n d(\neg v, e))$.
Then $s \neq v$ and $s \not \vDash \operatorname{effcond}(\neg v, e)$.
We may additionally assume $s \not \vDash$ effcond (v, e)
because otherwise we can apply Case 1 of this proof.
Then $s \llbracket e \rrbracket \models v$ by the third case in the definition of $s \llbracket e \rrbracket$.

Regressing State Variables: Correctness (3)

Proof (continued).

(\Leftarrow) : Proof by contraposition.
We show that if $\operatorname{regr}(v, e)$ is false in s, then v is false in $s \llbracket e \rrbracket$.

Regressing State Variables: Correctness (3)

Proof (continued).

(\Leftarrow) : Proof by contraposition.
We show that if $\operatorname{regr}(v, e)$ is false in s, then v is false in $s \llbracket e \rrbracket$.
■ By prerequisite, $s \not \vDash \operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$.

Regressing State Variables: Correctness (3)

Proof (continued).

(\Leftarrow) : Proof by contraposition.
We show that if $\operatorname{regr}(v, e)$ is false in s, then v is false in $s \llbracket e \rrbracket$.

- By prerequisite, $s \not \vDash \operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$.

■ Hence $s=\neg \operatorname{effcond}(v, e) \wedge(\neg v \vee$ effcond $(\neg v, e))$.

Regressing State Variables: Correctness (3)

Proof (continued).

(\Leftarrow) : Proof by contraposition.
We show that if $\operatorname{regr}(v, e)$ is false in s, then v is false in $s \llbracket e \rrbracket$.

- By prerequisite, $s \not \vDash \operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$.
- Hence $s=\neg \operatorname{effcond}(v, e) \wedge(\neg v \vee$ effcond $(\neg v, e))$.

■ From the first conjunct, we get $s \models \neg \operatorname{effcond}(v, e)$ and hence $s \not \vDash \operatorname{effcond}(v, e)$.

Regressing State Variables: Correctness (3)

Proof (continued).

(\Leftarrow) : Proof by contraposition.
We show that if $\operatorname{regr}(v, e)$ is false in s, then v is false in $s \llbracket e \rrbracket$.
■ By prerequisite, $s \not \vDash \operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$.

- Hence $s \models \neg \operatorname{effcond}(v, e) \wedge(\neg v \vee$ effcond $(\neg v, e))$.

■ From the first conjunct, we get $s \models \neg \operatorname{effcond}(v, e)$ and hence $s \not \vDash \operatorname{effcond}(v, e)$.
■ From the second conjunct, we get $s \models \neg v \vee \operatorname{effcond}(\neg v, e)$.

Regressing State Variables: Correctness (3)

Proof (continued).

(\Leftarrow) : Proof by contraposition.
We show that if $\operatorname{regr}(v, e)$ is false in s, then v is false in $s \llbracket e \rrbracket$.

- By prerequisite, $s \not \vDash \operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$.

■ Hence $s \models \neg$ effcond $(v, e) \wedge(\neg v \vee$ effcond $(\neg v, e))$.

- From the first conjunct, we get $s \models \neg \operatorname{effcond}(v, e)$ and hence $s \not \vDash \operatorname{effcond}(v, e)$.
- From the second conjunct, we get $s \models \neg v \vee \operatorname{effcond}(\neg v, e)$.

■ Case 1: $s \models \neg v$. Then v is false before applying e and remains false, so $s \llbracket e \rrbracket \not \models v$.

Regressing State Variables: Correctness (3)

Proof (continued).

(\Leftarrow) : Proof by contraposition.
We show that if $\operatorname{regr}(v, e)$ is false in s, then v is false in $s \llbracket e \rrbracket$.

- By prerequisite, $s \not \vDash \operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e))$.

■ Hence $s \models \neg \operatorname{effcond}(v, e) \wedge(\neg v \vee$ effcond $(\neg v, e))$.

- From the first conjunct, we get $s \models \neg \operatorname{effcond}(v, e)$ and hence $s \not \vDash \operatorname{effcond}(v, e)$.
- From the second conjunct, we get $s \models \neg v \vee \operatorname{effcond}(\neg v, e)$.

■ Case 1: $s \models \neg v$. Then v is false before applying e and remains false, so $s \llbracket e \rrbracket \not \models v$.

- Case 2: $s=e \operatorname{effcond}(\neg v, e)$. Then v is deleted by e and not simultaneously added, so $s \llbracket e \rrbracket \not \models v$.

Regressing Formulas Through Effects

Regressing Formulas Through Effects: Idea

■ We can now generalize regression from state variables to general formulas over state variables.

- The basic idea is to replace every occurrence of every state variable v by $\operatorname{regr}(v, e)$ as defined in the previous section.
- The following definition makes this more formal.

Regressing Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect, and let φ be a formula over propositional state variables.

The regression of φ through e, written $\operatorname{regr}(\varphi, e)$, is defined as the following logical formula:

$$
\begin{aligned}
\operatorname{regr}(\top, e) & =\top \\
\operatorname{regr}(\perp, e) & =\perp \\
\operatorname{regr}(v, e) & =\operatorname{effcond}(v, e) \vee(v \wedge \neg \operatorname{effcond}(\neg v, e)) \\
\operatorname{regr}(\neg \psi, e) & =\neg \operatorname{regr}(\psi, e) \\
\operatorname{regr}(\psi \vee \chi, e) & =\operatorname{regr}(\psi, e) \vee \operatorname{regr}(\chi, e) \\
\operatorname{regr}(\psi \wedge \chi, e) & =\operatorname{regr}(\psi, e) \wedge \operatorname{regr}(\chi, e) .
\end{aligned}
$$

Regressing Formulas Through Effects: Example

Example

Let $e=(b \triangleright a) \wedge(c \triangleright \neg a) \wedge b \wedge \neg d$.
Recall:

- $\operatorname{regr}(a, e) \equiv b \vee(a \wedge \neg c)$
- $\operatorname{regr}(b, e) \equiv \top$
- $\operatorname{regr}(c, e) \equiv c$
- $\operatorname{regr}(d, e) \equiv \perp$

We get:

$$
\begin{aligned}
\operatorname{regr}((a \vee d) \wedge(c \vee d), e) & \equiv((b \vee(a \wedge \neg c)) \vee \perp) \wedge(c \vee \perp) \\
& \equiv(b \vee(a \wedge \neg c)) \wedge c \\
& \equiv b \wedge c
\end{aligned}
$$

Regressing Formulas Through Effects: Correctness (1)

Lemma (Correctness of $\operatorname{regr}(\varphi, e)$)
Let φ be a logical formula, e an effect and s a state of a propositional planning task.

Then $s \neq \operatorname{regr}(\varphi, e)$ iff $s \llbracket e \rrbracket \models \varphi$.

Regressing Formulas Through Effects: Correctness (2)

Proof.
The proof is by structural induction on φ.

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.
Induction hypothesis: $s \models \operatorname{regr}(\psi, e)$ iff $s \llbracket e \rrbracket \models \psi$ for all proper subformulas ψ of φ.

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.
Induction hypothesis: $s \models \operatorname{regr}(\psi, e)$ iff $s \llbracket e \rrbracket \models \psi$
for all proper subformulas ψ of φ.
Base case $\varphi=\mathrm{T}$:
We have $\operatorname{regr}(\mathrm{T}, e)=\mathrm{T}$, and $s \models \top$ iff $s \llbracket e \rrbracket \models \top$ is correct.

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.
Induction hypothesis: $s \models \operatorname{regr}(\psi, e)$ iff $s \llbracket e \rrbracket \models \psi$
for all proper subformulas ψ of φ.
Base case $\varphi=\mathrm{T}$:
We have $\operatorname{regr}(\mathrm{T}, e)=\mathrm{T}$, and $s \models \mathrm{~T}$ iff $s \llbracket e \rrbracket \models \mathrm{~T}$ is correct.
Base case $\varphi=\perp$:
We have $\operatorname{regr}(\perp, e)=\perp$, and $s \models \perp$ iff $s \llbracket e \rrbracket \models \perp$ is correct.

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ.
Induction hypothesis: $s \models \operatorname{regr}(\psi, e)$ iff $s \llbracket e \rrbracket \models \psi$
for all proper subformulas ψ of φ.
Base case $\varphi=\mathrm{T}$:
We have $\operatorname{regr}(\mathrm{T}, e)=\mathrm{T}$, and $s \models \mathrm{~T}$ iff $s \llbracket e \rrbracket \models \top$ is correct.
Base case $\varphi=\perp$:
We have $\operatorname{regr}(\perp, e)=\perp$, and $s \models \perp$ iff $s \llbracket e \rrbracket \models \perp$ is correct.
Base case $\varphi=v$:
We have $s \models \operatorname{regr}(v, e)$ iff $s \llbracket e \rrbracket \models v$ from the previous lemma.

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case $\varphi=\neg \psi$:

$$
\begin{aligned}
s \models \operatorname{regr}(\neg \psi, e) & \text { iff } s \models \neg \operatorname{regr}(\psi, e) \\
& \text { iff } s \not \models \operatorname{regr}(\psi, e) \\
& \text { iff } s \llbracket e \rrbracket \not \models \psi \\
& \text { iff } s \llbracket e \rrbracket \models \neg \psi
\end{aligned}
$$

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case $\varphi=\neg \psi$:

$$
\begin{aligned}
s \models \operatorname{regr}(\neg \psi, e) & \text { iff } s \models \neg \operatorname{regr}(\psi, e) \\
& \text { iff } s \not \models \operatorname{regr}(\psi, e) \\
& \text { iff } s \llbracket e \rrbracket \not \models \psi \\
& \text { iff } s \llbracket e \rrbracket \models \neg \psi
\end{aligned}
$$

Inductive case $\varphi=\psi \vee \chi$:

$$
\begin{aligned}
s \models \operatorname{regr}(\psi \vee \chi, e) & \text { iff } s \models \operatorname{regr}(\psi, e) \vee \operatorname{regr}(\chi, e) \\
& \text { iff } s \models \operatorname{regr}(\psi, e) \text { or } s \models \operatorname{regr}(\chi, e) \\
& \text { iff } s \llbracket e \rrbracket \models \psi \text { or } s \llbracket e \rrbracket \models \chi \\
& \text { iff } s \llbracket e \rrbracket \models \psi \vee \chi
\end{aligned}
$$

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case $\varphi=\neg \psi$:

$$
\begin{aligned}
s \models \operatorname{regr}(\neg \psi, e) & \text { iff } s \models \neg \operatorname{regr}(\psi, e) \\
& \text { iff } s \not \models \operatorname{regr}(\psi, e) \\
& \text { iff } s \llbracket e \rrbracket \not \models \psi \\
& \text { iff } s \llbracket e \rrbracket \models \neg \psi
\end{aligned}
$$

Inductive case $\varphi=\psi \vee \chi$:

$$
\begin{aligned}
s \models \operatorname{regr}(\psi \vee \chi, e) & \text { iff } s \models \operatorname{regr}(\psi, e) \vee \operatorname{regr}(\chi, e) \\
& \text { iff } s \models \operatorname{regr}(\psi, e) \text { or } s \models \operatorname{regr}(\chi, e) \\
& \text { iff } s \llbracket e \rrbracket \models \psi \text { or } s \llbracket e \rrbracket \models \chi \\
& \text { iff } s \llbracket e \rrbracket \models \psi \vee \chi
\end{aligned}
$$

Inductive case $\varphi=\psi \wedge \chi$:
Like previous case, replacing " \vee " by " \wedge " and replacing "or" by "and".

Regressing Formulas Through Operators

Regressing Formulas Through Operators: Idea

- We can now regress arbitrary formulas through arbitrary effects.
- The last missing piece is a definition of regression through operators, describing exactly in which states s applying a given operator o leads to a state satisfying a given formula φ.
■ There are two requirements:
- The operator o must be applicable in the state s.
- The resulting state $s \llbracket o \rrbracket$ must satisfy φ.

Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator, and let φ be a formula over state variables.
The regression of φ through o, written $\operatorname{regr}(\varphi, o)$, is defined as the following logical formula:

$$
\operatorname{regr}(\varphi, o)=\operatorname{pre}(o) \wedge \operatorname{regr}(\varphi, \operatorname{eff}(o)) .
$$

Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of $\operatorname{regr}(\varphi, o)$)

Let φ be a logical formula, o an operator and s a state of a propositional planning task.

Then $s \vDash \operatorname{regr}(\varphi, \circ)$ iff \circ is applicable in s and $s \llbracket \circ \rrbracket \models \varphi$.

Regressing Formulas Through Operators: Correctness (2)

Reminder: $\operatorname{regr}(\varphi, o)=\operatorname{pre}(o) \wedge \operatorname{regr}(\varphi, \operatorname{eff}(o))$

Proof.

Case 1: $s \models \operatorname{pre}(o)$.
Then o is applicable in s and the statement we must prove simplifies to: $s \models \operatorname{regr}(\varphi, e)$ iff $s \llbracket e \rrbracket \models \varphi$, where $e=\operatorname{eff}(o)$. This was proved in the previous lemma.

Regressing Formulas Through Operators: Correctness (2)

Reminder: $\operatorname{regr}(\varphi, o)=\operatorname{pre}(o) \wedge \operatorname{regr}(\varphi, \operatorname{eff}(o))$

Proof.

Case 1: $s \models \operatorname{pre}(o)$.
Then o is applicable in s and the statement we must prove simplifies to: $s \models \operatorname{regr}(\varphi, e)$ iff $s \llbracket e \rrbracket \models \varphi$, where $e=\operatorname{eff}(o)$. This was proved in the previous lemma.

Case 2: $s \not \vDash \operatorname{pre}(o)$.
Then $s \not \vDash \operatorname{regr}(\varphi, o)$ and o is not applicable in s.
Hence both statements are false and therefore equivalent.

Regression Examples (1)

Examples: compute regression and simplify to DNF

- $\operatorname{regr}(b,\langle a, b\rangle)$
$\equiv a \wedge(T \vee(b \wedge \neg \perp))$
$\equiv a$
- $\operatorname{regr}(b \wedge c \wedge d,\langle a, b\rangle)$
$\equiv a \wedge(T \vee(b \wedge \neg \perp)) \wedge(\perp \vee(c \wedge \neg \perp)) \wedge(\perp \vee(d \wedge \neg \perp))$
$\equiv a \wedge c \wedge d$
- $\operatorname{regr}(b \wedge \neg c,\langle a, b \wedge c\rangle)$
$\equiv a \wedge(T \vee(b \wedge \neg \perp)) \wedge \neg(T \vee(c \wedge \neg \perp))$
$\equiv a \wedge \top \wedge \perp$
$\equiv \perp$

Regression Examples (2)

Examples: compute regression and simplify to DNF

- $\operatorname{regr}(b,\langle a, c \triangleright b\rangle)$
$\equiv a \wedge(c \vee(b \wedge \neg \perp))$
$\equiv a \wedge(c \vee b)$
$\equiv(a \wedge c) \vee(a \wedge b)$
- $\operatorname{regr}(b,\langle a,(c \triangleright b) \wedge((d \wedge \neg c) \triangleright \neg b)\rangle)$
$\equiv a \wedge(c \vee(b \wedge \neg(d \wedge \neg c)))$
$\equiv a \wedge(c \vee(b \wedge(\neg d \vee c)))$
$\equiv a \wedge(c \vee(b \wedge \neg d) \vee(b \wedge c))$
$\equiv a \wedge(c \vee(b \wedge \neg d))$
$\equiv(a \wedge c) \vee(a \wedge b \wedge \neg d)$

Summary

Summary

- Regressing a propositional state variable through an (arbitrary) operator must consider two cases:
- state variables made true (by add effects)
- state variables remaining true (by absence of delete effects)

■ Regression of propositional state variables can be generalized to arbitrary formulas φ by replacing each occurrence of a state variable in φ by its regression.
■ Regressing a formula φ through an operator involves regressing φ through the effect and enforcing the precondition.

