Planning and Optimization C2. Progression and Regression Search

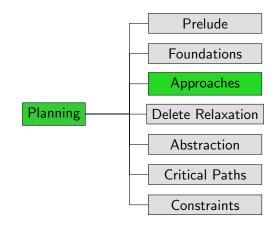
Malte Helmert and Gabriele Röger

Universität Basel

October 9, 2023

Regression for STRIPS Tasks

Content of this Course



Introduction

Progressior 0000 Regression 000000 Regression for STRIPS Tasks

Summary 00

Introduction

Regression for STRIPS Tasks

Search Direction

Search direction

- one dimension for classifying search algorithms
- forward search from initial state to goal based on progression
- backward search from goal to initial state based on regression
- bidirectional search

In this chapter we look into progression and regression planning.

init()

■ h(*s*)

 \blacksquare succ(s)

Introduction

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

- \rightsquigarrow returns initial state
- is_goal(s) ~ ~ tests if s is a goal state
 - \rightsquigarrow returns all pairs $\langle a, s' \rangle$ with $s \xrightarrow{a} s'$
- cost(a) ~→ returns cost of action a
 - \rightsquigarrow returns heuristic value for state s

Prog

ogression

Regression 000000 Regression for STRIPS Tasks

Summary 00

Progression

Planning by Forward Search: Progression

Progression: Computing the successor state s[[o]] of a state s with respect to an operator o.

Progression planners find solutions by forward search:

- start from initial state
- iteratively pick a previously generated state and progress it through an operator, generating a new state
- solution found when a goal state generated
- pro: very easy and efficient to implement

Search Space for Progression

Search Space for Progression

search space for progression in a planning task $\Pi = \langle V, I, O, \gamma \rangle$ (search states are world states s of Π ; actions of search space are operators $o \in O$)

- init() \rightarrow returns I
- is_goal(s) \rightsquigarrow tests if $s \models \gamma$
- - \rightarrow returns all pairs $\langle o, s[[o]] \rangle$ where $o \in O$ and o is applicable in s
- \bullet cost(*o*)

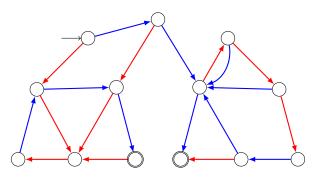
h(s)

• succ(s)

- \rightarrow returns *cost*(*o*) as defined in Π
- \rightarrow estimates cost from s to γ (\rightarrow Parts D-G)

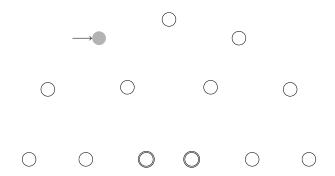
Regression for STRIPS Tasks

Progression Planning Example



Regression for STRIPS Tasks

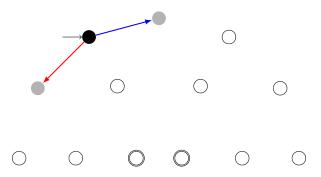
Progression Planning Example



Regression for STRIPS Tasks

Summary 00

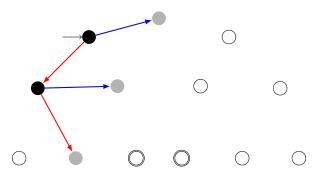
Progression Planning Example



Regression for STRIPS Tasks

Summary 00

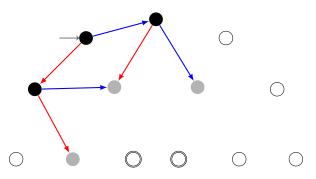
Progression Planning Example



Regression for STRIPS Tasks

Summary 00

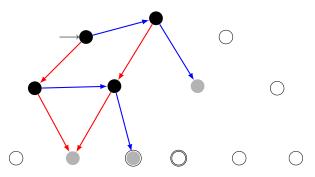
Progression Planning Example



Regression for STRIPS Tasks

Summary 00

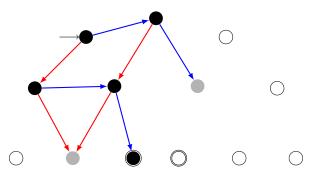
Progression Planning Example



Regression for STRIPS Tasks

Summary 00

Progression Planning Example



Progres

Regression for STRIPS Tasks

Summary 00

Regression

Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction is not symmetric:

- forward search starts from a single initial state;
 backward search starts from a set of goal states
- when applying an operator o in a state s in forward direction, there is a unique successor state s';
 if we just applied operator o and ended up in state s', there can be several possible predecessor states s
- → in most natural representation for backward search in planning, each search state corresponds to a set of world states

Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S', o) of a set of states S' ("subgoal") given the last operator o that was applied.

 \rightsquigarrow formal definition in next chapter

Regression planners find solutions by backward search:

- start from set of goal states
- iteratively pick a previously generated subgoal (state set) and regress it through an operator, generating a new subgoal
- solution found when a generated subgoal includes initial state
- pro: can handle many states simultaneously con: basic operations complicated and expensive

Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

- each search state corresponds to a set of world states
 ("subgoal")
- each search state is represented by a logical formula: φ represents $\{s \in S \mid s \models \varphi\}$
- many basic search operations like detecting duplicates are NP-complete or coNP-complete

Search Space for Regression

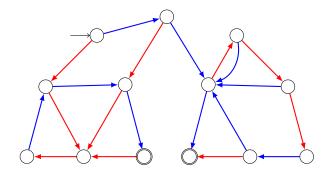
Search Space for Regression

search space for regression in a planning task $\Pi = \langle V, I, O, \gamma \rangle$ (search states are formulas φ describing sets of world states; actions of search space are operators $o \in O$)

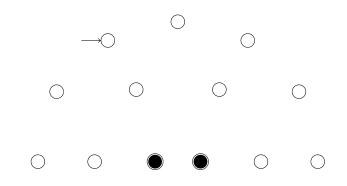
- init() \rightsquigarrow returns γ
- is_goal(φ) \rightsquigarrow tests if $I \models \varphi$
- **succ**(φ) \rightsquigarrow returns all pairs $\langle o, regr(\varphi, o) \rangle$ where $o \in O$ and $regr(\varphi, o)$ is defined
- \bullet cost(*o*)

■ h(φ)

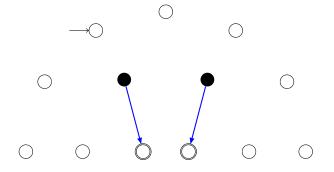
- \rightarrow returns *cost*(*o*) as defined in Π
- \rightarrow estimates cost from I to φ (\rightarrow Parts D–G)



 γ



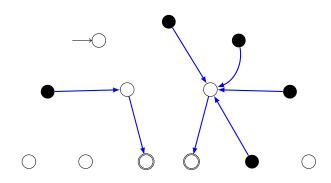
$$\varphi_1 = \textit{regr}(\gamma, \longrightarrow)$$



 φ_1

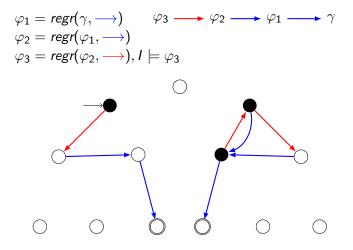
 γ

$$\begin{aligned} \varphi_1 &= \operatorname{regr}(\gamma, \longrightarrow) \\ \varphi_2 &= \operatorname{regr}(\varphi_1, \longrightarrow) \end{aligned}$$



 γ

 φ_1



Introduction 000 Progression 0000 Regression 000000 Regression for STRIPS Tasks

Summary 00

Regression for STRIPS Tasks

Regression for STRIPS Planning Tasks

Regression for STRIPS planning tasks is much simpler than the general case:

- Consider subgoal φ that is conjunction of atoms a₁ ∧ · · · ∧ a_n (e.g., the original goal γ of the planning task).
- **First step**: Choose an operator o that deletes no a_i .
- **Second step**: Remove any atoms added by o from φ .
- **Third step:** Conjoin pre(o) to φ .
- → Outcome of this is regression of φ w.r.t. *o*. It is again a conjunction of atoms.

optimization: only consider operators adding at least one a_i

Regression for STRIPS Tasks

STRIPS Regression

Definition (STRIPS Regression)

Let $\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n$ be a conjunction of atoms, and let *o* be a STRIPS operator which adds the atoms a_1, \ldots, a_k and deletes the atoms d_1, \ldots, d_l .

The STRIPS regression of φ with respect to o is

$$sregr(\varphi, o) := \begin{cases} \bot & \text{if } \varphi_i = d_j \text{ for some } i, j \\ pre(o) \land \bigwedge (\{\varphi_1, \dots, \varphi_n\} \setminus \{a_1, \dots, a_k\}) & \text{else} \end{cases}$$

Note: $sregr(\varphi, o)$ is again a conjunction of atoms, or \bot .

Does this Capture the Idea of Regression?

For our definition to capture the concept of regression, it must have the following property:

Regression Property

For all sets of states described by a conjunction of atoms φ , all states *s* and all STRIPS operators *o*,

$$s \models sregr(\varphi, o)$$
 iff $s[[o]] \models \varphi$.

This is indeed true. We do not prove it now because we prove this property for general regression (not just STRIPS) later.

Introd	
000	

Progression 0000 Regression 000000 Regression for STRIPS Tasks

Summary ●○

Summary

Summary

- Progression search proceeds forward from the initial state.
- In progression search, the search space is identical to the state space of the planning task.
- Regression search proceeds backwards from the goal.
- Each search state corresponds to a set of world states, for example represented by a formula.
- Regression is simple for STRIPS operators.
- The theory for general regression is more complex. This is the topic of the following chapter.