Planning and Optimization
B6. Computational Complexity of Planning

Malte Helmert and Gabriele Röger
Universität Basel
October 4, 2023
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization
October 4, 2023 - B6. Computational Complexity of Planning

B6.1 Motivation
B6.2 Background: Complexity Theory
B6.3 (Bounded-Cost) Plan Existence
B6.4 PSPACE-Completeness of Planning
B6.5 More Complexity Results
B6.6 Summary

B6. Computational Complexity of Planning B6.1 Motivation	Motivation
M. Helmert, G. Röger (Universität Basel) \quad Planning and Optimization	October 4, 2023 4/31

- Using state-space search (e.g., using Dijkstra's algorithm on the transition system), planning can be solved in polynomial time in the number of states.
- However, the number of states is exponential in the number of state variables, and hence in general exponential in the size of the input to the planning algorithm.
\rightsquigarrow Do non-exponential planning algorithms exist?
\rightsquigarrow What is the precise computational complexity of planning?
- understand the problem
- know what is not possible
- find interesting subproblems that are easier to solve
distinguish essential features from syntactic sugar
\quad Is STRIPS planning easier than general planning?
distinguish essential features from syntactic sugar
\quad Is STRIPS planning easier than general planning?
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

```
B6. Computational Complexity of Planning
Reminder: Complexity Theory
```

Background: Complexity Theory

Need to Catch Up?

- We assume knowledge of complexity theory:
- languages and decision problems
- Turing machines: NTMs and DTMs; polynomial equivalence with other models of computation
- complexity classes: P, NP, PSPACE
- polynomial reductions
- If you are not familiar with these topics, we recommend Chapters B10, D1-D3, D6 of the Theory of Computer Science course at https://dmi.unibas.ch/de/studium/ computer-science-informatik/lehrangebot-fs23/ main-lecture-theory-of-computer-science-1/

Definition (Nondeterministic Turing Machine)
A nondeterministic Turing machine (NTM) is a 6-tuple
$\left\langle\Sigma, \square, Q, q_{0}, q_{\mathrm{Y}}, \delta\right\rangle$ with the following components:

- input alphabet Σ and blank symbol $\square \notin \Sigma$
- alphabets always nonempty and finite
- tape alphabet $\Sigma_{\square}=\Sigma \cup\{\square\}$
- finite set Q of internal states with initial state $q_{0} \in Q$ and accepting state $q_{Y} \in Q$
- nonterminal states $Q^{\prime}:=Q \backslash\left\{q_{\mathrm{Y}}\right\}$
- transition relation $\delta:\left(Q^{\prime} \times \Sigma_{\square}\right) \rightarrow 2^{Q \times \Sigma_{\square} \times\{-1,+1\}}$

Deterministic Turing machine (DTM):

$$
|\delta(q, s)|=1 \text { for all }\langle q, s\rangle \in Q^{\prime} \times \Sigma_{\square}
$$

Definition (Acceptance of a Language in Time/Space)

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$.
A NTM accepts language $L \subseteq \Sigma^{*}$ in time f if it accepts each $w \in L$ within $f(|w|)$ steps and does not accept any $w \notin L$ (in any time).
It accepts language $L \subseteq \Sigma^{*}$ in space f if it accepts each $w \in L$ using at most $f(|w|)$ tape cells and does not accept any $w \notin L$.

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$.
Complexity class DTIME (f) contains all languages accepted in time f by some DTM.
Complexity class NTIME (f) contains all languages accepted in time f by some NTM.
Complexity class DSPACE (f) contains all languages accepted in space f by some DTM.

Complexity class NSPACE (f) contains all languages accepted in space f by some NTM.

Let \mathcal{P} be the set of polynomials $p: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ whose coefficients are natural numbers.

```
Definition (P, NP, PSPACE, NPSPACE)
```

 \(\mathrm{P}=\bigcup_{p \in \mathcal{P}} \operatorname{DTIME}(p)\)
 \(\mathrm{NP}=\bigcup_{p \in \mathcal{P}} \operatorname{NTIME}(p)\)
 \(\operatorname{PSPACE}=\bigcup_{p \in \mathcal{P}} \operatorname{DSPACE}(p)\)
 $\operatorname{NPSPACE}=\bigcup_{p \in \mathcal{P}} \operatorname{NSPACE}(p)$
Theorem (Complexity Class Hierarchy)
$P \subseteq N P \subseteq$ PSPACE $=$ NPSPACE
Proof.
$\mathrm{P} \subseteq$ NP and PSPACE \subseteq NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.
NP \subseteq NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.
PSPACE $=$ NPSPACE is a special case of a classical result
known as Savitch's theorem (Savitch 1970).

Definition (Plan Existence)

Plan existence (PlanEx) is the following decision problem:

Given: planning task Π

Question: Is there a plan for Π ?
\leadsto decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)
Bounded-cost plan existence (BCPLANEx)
is the following decision problem:
Given: \quad planning task Π, cost bound $K \in \mathbb{N}_{0}$
Question: Is there a plan for Π with cost at most K ?
\rightsquigarrow decision problem analogue of optimal planning

Theorem (Reduction from PlanEx to BCPlanEx)

 PlanEx \leq_{p} BCPlanEx
Proof.

Consider a planning task Π with state variables V.
Let $c_{\max }$ be the maximal cost of all operators of Π.
Compute the number of states of Π as $N=2^{|V|}$.
Π is solvable iff there is solution with cost at most $c_{\max } \cdot(N-1)$ because a solution need not visit any state twice.
\rightsquigarrow map instance Π of PlanEx to instance $\left\langle\Pi, c_{\max } \cdot(N-1)\right\rangle$ of BCPLanEx
\rightsquigarrow polynomial reduction
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
October 4, 2023

PSPACE-Hardness

Idea: generic reduction

- For an arbitrary fixed DTM M with space bound polynomial p and input w, generate propositional planning task which is solvable iff M accepts w in space $p(|w|)$.
- Without loss of generality, we assume $p(n) \geq n$ for all n.

Reduction: Initial State

Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{\mathrm{Y}}, \delta\right\rangle$ be the fixed DTM, and let p be its space-bound polynomial.
Given input $w_{1} \ldots w_{n}$, define relevant tape positions
$X:=\{-p(n), \ldots, p(n)\}$
Initial State
Initially true:

- state $_{q_{0}}$
- head ${ }_{1}$
- content ${ }_{i, w_{i}}$ for all $i \in\{1, \ldots, n\}$
- content ${ }_{i, \square}$ for all $i \in X \backslash\{1, \ldots, n\}$

Initially false:

- all others

B6. Computational Complexity of Planning

Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{\mathrm{Y}}, \delta\right\rangle$ be the fixed DTM, and let p be its space-bound polynomial.
Given input $w_{1} \ldots w_{n}$, define relevant tape positions
$X:=\{-p(n), \ldots, p(n)\}$
State Variables

- state $_{q}$ for all $q \in Q$
- head $_{i}$ for all $i \in X \cup\{-p(n)-1, p(n)+1\}$
- content $_{i, a}$ for all $i \in X, a \in \Sigma_{\square}$
\rightsquigarrow allows encoding a Turing machine configuration
M. Helmert, G. Röger (Universität Basel) Planning and Optimization

B6. Computational Complexity of Planning
 Reduction: Operators

PSPACE-Completeness of Planning

Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{\mathrm{Y}}, \delta\right\rangle$ be the fixed DTM and let p be its space-bound polynomial.
Given input $w_{1} \ldots w_{n}$, define relevant tape positions $X:=\{-p(n), \ldots, p(n)\}$

Operators
One operator for each transition rule $\delta(q, a)=\left\langle q^{\prime}, a^{\prime}, d\right\rangle$ and each cell position $i \in X$:
$-{\text { precondition: } \text { state }_{q} \wedge \text { head }_{i} \wedge \text { content }_{i, a}, ~}_{\text {l }}$

- effect: \neg state $_{q} \wedge \neg$ head $_{i} \wedge \neg$ content $_{i, a}$

$$
\wedge \text { state }_{q^{\prime}} \wedge \text { head }_{i+d} \wedge \text { content }_{i, a^{\prime}}
$$

Note that add-after-delete semantics are important here!

Let $M=\left\langle\Sigma, \square, Q, q_{0}, q_{\mathrm{Y}}, \delta\right\rangle$ be the fixed DTM, and let p be its space-bound polynomial.
Given input $w_{1} \ldots w_{n}$, define relevant tape positions
$X:=\{-p(n), \ldots, p(n)\}$
Goal
state $_{q Y}$

B6. Computational Complexity of Planning
PSPACE-Completeness of Planning
PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994) PlanEx and BCPlanEx are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.

Membership for BCPLANEx was already shown.
Hardness for PlanEx follows because we just presented a polynomial reduction from an arbitrary problem in PSPACE to PlanEx. (Note that the reduction only generates STRIPS tasks, after trivial cleanup to make them conflict-free.)
Membership for PlanEx and hardness for BCPlanEx follow from the polynomial reduction from PlanEx to BCPLANEx.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
October 4, 2023

```
B6. Computational Complexity of Planning
    More Complexity Results
```

In addition to the basic complexity result presented in this chapter, there are many special cases, generalizations, variations and related problems studied in the literature:

- different planning formalisms
- e.g., nondeterministic effects, partial observability, schematic operators, numerical state variables
- syntactic restrictions of planning tasks
- e.g., without preconditions, without conjunctive effects, STRIPS without delete effects
- semantic restrictions of planning task
- e.g., restricting variable dependencies ("causal graphs")
- particular planning domains
- e.g., Blocksworld, Logistics, FreeCell

Some results for different planning formalisms:

- nondeterministic effects:
- fully observable: EXP-complete (Littman, 1997)
- unobservable: EXPSPACE-complete (Haslum \& Jonsson, 1999)
- partially observable: 2-EXP-complete (Rintanen, 2004)
- schematic operators.
- usually adds one exponential level to PlanEx complexity
- e.g., classical case EXPSPACE-complete (Erol et al., 1995)
- numerical state variables:
- undecidable in most variations (Helmert, 2002)

Summary

- PSPACE: decision problems solvable in polynomial space
- $\mathrm{P} \subseteq \mathrm{NP} \subseteq$ PSPACE $=$ NPSPACE .
- Classical planning is PSPACE-complete.
- This is true both for satisficing and optimal planning (rather, the corresponding decision problems).
- The hardness proof is a polynomial reduction that translates an arbitrary polynomial-space DTM into a STRIPS task:
- DTM configurations are encoded by state variables.
- Operators simulate transitions between DTM configurations.
- The DTM accepts an input iff there is a plan for the corresponding STRIPS task.
- This implies that there is no polynomial algorithm for classical planning unless $\mathrm{P}=$ PSPACE.
- It also means that planning is not polynomially reducible to any problem in NP unless NP $=$ PSPACE .

B6.6 Summary

