Planning and Optimization

B4. Equivalent Operators and Normal Forms

Malte Helmert and Gabriele Roger

Universitat Basel

October 2, 2023

Content of this Course

—{ Prelude ‘

—{ Approaches ‘

-7—{ Delete Relaxation ‘

—{ Abstraction ‘

— Critical Paths |

—{ Constraints ‘

Reminder & Motivation

Reminder & Motivation Equivalence Transformations Conflict-Free Operators

[e] le]e]e}

Reminder: Syntax of Effects

Definition (Effect)

Effects over propositional state variables V
are inductively defined as follows:

m T is an effect (empty effect).

m If v € V is a propositional state variable,
then v and —v are effects (atomic effect).

m If e and € are effects, then (e A €') is an effect
(conjunctive effect).

m If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects,
eg. cA(a> (=bA(c> (bA—dA=a))))A(—b> —a)
~ Can we make our life easier?

Summar

Reminder & Motivation Equivalence Transformations Conflict-Free Operators

[e]e] le]e}

Reminder: Semantics of Effects

m effcond(?, e): condition that must be true in the current state
for the effect e to trigger the atomic effect ¢

m add-after-delete semantics:
if an operator with effect e is applied in state s
and we have both s |= effcond(v, €) and s |= effcond(—v, e),
then s’(v) = T in the resulting state s'.

This is a very subtle detail.
~~» Can we make our life easier?

Reminder & Motivation Equivalence Transformations Conflict-Free Operators

[e]e]e] e}

Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and planning tasks.

Among other things, we consider normal forms that avoid
complicated nesting and subtleties of conflicts.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators a Summar
0000® 0000 0000 000000 00

Notation: Applying Operator Sequences

Existing notation:
m We already write s[o] for the resulting state
after applying operator o in state s.
New extended notation:

m For a sequence m = (oy, ..., 0n) of operators
that are consecutively applicable in s,
we write s[7] for s[oi][oz2] ... [on].
m This includes the case of an empty operator sequence:

s[O1=s

Equivalence Transformations

& Motivation Equivalence Transformations Conflict-Free Operators a ects Summar

(o] le]e]

Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and €’ over state variables V are equivalent,
written e = €', if s[e] = s[[¢'] for all states s.

Definition (Equivalent Operators)

Two operators o and o’ over state variables V are equivalent,
written o = o', if cost(o) = cost(0’) and for all states s, s’ over V,

/
o induces the transition s = s’ iff o’ induces the transition s = s’.

Equivalence Transformations
[e]e] e}

Equivalence of Operators and Effects: Theorem

Let 0 and o’ be operators with pre(o) = pre(0’), effo) = eff{0’)
and cost(o) = cost(o'). Then o = o’.

Note: The converse is not true. (Why not?)

& Motivation Equivalence Transformations Conflict-Free Operators a cts Summar

[e]ele]]

ene = € Nne (1)
(ene)ne” = en(ene’) (2)
The = e (3)
x>e=yxD>e if x =% (4)
Tre=ce (5)
lpe=T (6)
Xx>(X'>e) = (xAX)>e (7)
x> (ene) = (x>e)A(x>€) (8)
(x>e)A(X'>e) = (xVX)>e (9)

Conflict-Free Operators

@000

Conflict-Free Operators

& Motivation Equivalence Transformations Conflict-Free Operators

0@00

Conflict-Freeness: Motivation

m The add-after-delete semantics makes effects like
(a> c) A (b > —c) somewhat unintuitive to interpret.

~» What happens in states where a A b is true?

m It would be nicer if effcond(¢, e) always were the condition
under which the atomic effect ¢ actually materializes
(because of add-after-delete, it is not)

~> introduce normal form where “complicated case” never arises

& Motivation Equivalence Transformations Conflict-Free Operators a ects Summar

[e]e] le)

Conflict-Free Effects and Operators

Definition (Conflict-Free)

An effect e over propositional state variables V
is called conflict-free if effcond(v, e) A effcond(—v, e)
is unsatisfiable for all v € V.

An operator o is called conflict-free if eff0) is conflict-free.

& Motivation Equivalence Transformations Conflict-Free Operators
0000 000e

Making Operators Conflict-Free

m In general, testing whether an operator is conflict-free
is a coNP-complete problem. (Why?)
m However, we do not necessarily need such a test.
Instead, we can produce an equivalent conflict-free operator
in polynomial time.
m Algorithm: given operator o, replace all atomic effects
of the form —v by (—effcond(v, eff0)) > —v).
The resulting operator o’ is conflict-free and o = o'. (Why?)

Flat Effects
©00000

Flat Effects

der & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects

O®0000

Flat Effects: Motivation

m CNF and DNF limit the nesting of connectives
in propositional logic.
m For example, a CNF formula is
® a conjunction of 0 or more subformulas,
m each of which is a disjunction of 0 or more subformulas,
m each of which is a literal.
m Similarly, we can define a normal form that limits
the nesting of effects.

m This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.

& Motivation Equivalence Transformations Conflict-Free Operators Flat Effects
0000 0000 000000

Flat Effect

Definition (Flat Effect)

An effect is simple if it is either an atomic effect

or of the form (x > e), where e is an atomic effect.

An effect e is flat if it is a conjunction of 0 or more simple effects,
and none of these simple effects include the same atomic effect.

An operator o is flat if eff{0) is flat.

Notes: analogously to CNF, we consider
m a single simple effect as a conjunction of 1 simple effect

m the empty effect as a conjunction of 0 simple effects

h mind Jsr & vatio Equivalence Transformations Conflict-Free Operators Flat Effects Summary

0O00e00

Flat Effect: Example

Consider the effect

cA(a (b A(c> (bA—dA=a)))) A (—b>—a)

An equivalent flat (and conflict-free) effect is

cA
((aA—c) > —b) A
((anc)>b)A
((anc) > —d) A
(=bV(anc)) > —a)

v

Note: if we want, we can write ¢ as (T > ¢) to make the structure
even more uniform, with each simple effect having a condition.

Flat Effects
000000

Producing Flat Operators

For every operator, an equivalent flat operator and an equivalent
flat, conflict-free operator can be computed in polynomial time.

Reminder & Motivation Eq ce Transformations Conflict-Free Operators Flat Effects Summary
00000 0000 000000 00

Producing Flat Operators: Proof

Proof Sketch.
Replace the effect e over variables V' by

A, cv(effcond(v,e) > v)
A Nyey(effcond(—v, e) > —v),

which is an equivalent flat effect.

To additionally obtain conflict-freeness, use

Avcy(effcond(v,e) > v)
A Nvev((effcond(=v, e) A —effcond(v, e)) > —v)

instead.

(Conjuncts of the form (x > e) where y = L
can be omitted to simplify the effect.)

Summarn
0

Summary

der & Motivation Equivalence Transformations Conflict-Free Operators E ¢ Summary
0 0000 0000 00 o

Summary

m Equivalences can be used to simplify operators and effects.

m In conflict-free operators, the “complicated case”
of operator semantics does not arise.

m For flat operators, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.

m For flat, conflict-free operators, it is easy to determine
the condition under which a given literal is made true
by applying the operator in a given state.

m Every operator can be transformed into an equivalent
flat and conflict-free one in polynomial time.

	Reminder & Motivation
	

	Equivalence Transformations
	

	Conflict-Free Operators
	

	Flat Effects
	

	Summary
	

