

B3.1 Semantics of Effects and Operators

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Semantics of Effects: Effect Conditions

B3. Formal Definition of Planning

Semantics of Effects and Operators

Effect Condition: Example (2)

Example Consider the move operator m_1 from the running example: $eff(m_1) = ((t_1 \rhd \neg t_1) \land (\neg t_1 \rhd t_1)).$ Under which conditions does it set i to true? $effcond(i, eff(m_1)) = effcond(i, ((t_1 \rhd \neg t_1) \land (\neg t_1 \rhd t_1)))$ $= effcond(i, (t_1 \rhd \neg t_1)) \lor$ $effcond(i, (\neg t_1 \rhd t_1))$ $= (t_1 \land effcond(i, \neg t_1)) \lor$ $(\neg t_1 \land effcond(i, t_1))$ $= (t_1 \land \bot) \lor (\neg t_1 \land \bot)$ $\equiv \bot \lor \bot$

Planning and Optimization

B3. Formal Definition of Planning

Semantics of Effects and Operators

Effect Condition: Example (1)

Example

M. Helme

B3.

Consider the move operator m_1 from the running example: $eff(m_1) = ((t_1 \rhd \neg t_1) \land (\neg t_1 \rhd t_1)).$ Under which conditions does it set t_1 to false?

$$effcond(\neg t_{1}, eff(m_{1})) = effcond(\neg t_{1}, ((t_{1} \rhd \neg t_{1}) \land (\neg t_{1} \rhd t_{1})))$$

$$= effcond(\neg t_{1}, (t_{1} \rhd \neg t_{1})) \lor$$

$$effcond(\neg t_{1}, (\neg t_{1} \rhd t_{1}))$$

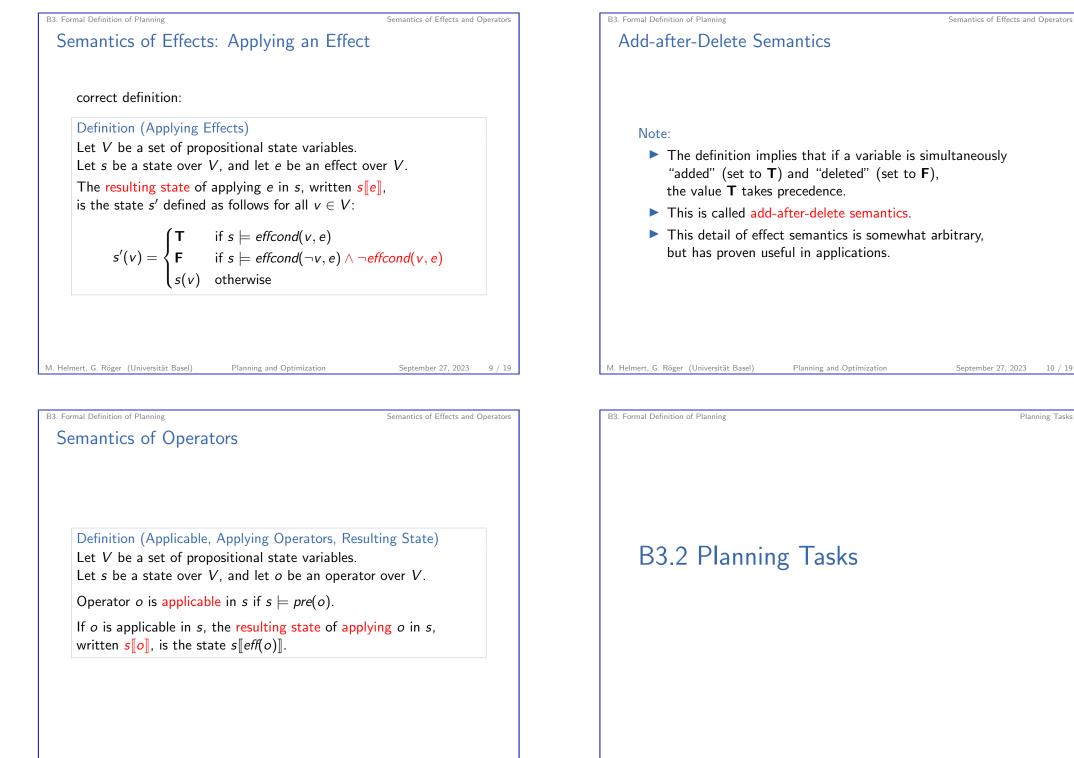
$$= (t_{1} \land effcond(\neg t_{1}, \neg t_{1})) \lor$$

$$(\neg t_{1} \land effcond(\neg t_{1}, t_{1}))$$

$$= (t_{1} \land \top) \lor (\neg t_{1} \land \bot)$$

$$\equiv t_{1} \lor \bot$$

$$\equiv t_{1}$$
Example 27, 2023 6 / 19


Semantics of Effects: Applying an EffectSemantics of Effects: Applying an EffectGemantics of Effects: Applying an Effectfirst attempt:Definition (Applying Effects)Let V be a set of propositional state variables.Let V be a set of propositional state variables.Let s be a state over V, and let e be an effect over V.The resulting state of applying e in s, written s[[e]],is the state s' defined as follows for all
$$v \in V$$
:s'(v) = $\begin{cases} T & \text{if } s \models effcond(v, e) \\ F & \text{if } s \models effcond(\neg v, e) \land \neg effcond(v, e) \\ s(v) & \text{otherwise} \end{cases}$ What is the problem with this definition?

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

7 / 19

8 / 19

Planning and Optimization

Planning Tasks

Planning Tasks

Definition (Planning Task)

A (propositional) planning task is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where

Planning and Optimization

- V is a finite set of propositional state variables,
- \blacktriangleright *I* is an interpretation of *V* called the initial state.
- \triangleright O is a finite set of operators over V, and
- \triangleright γ is a formula over V called the goal.

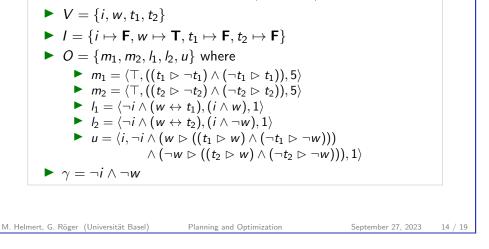
M. Helmert, G. Röger (Universität Basel)

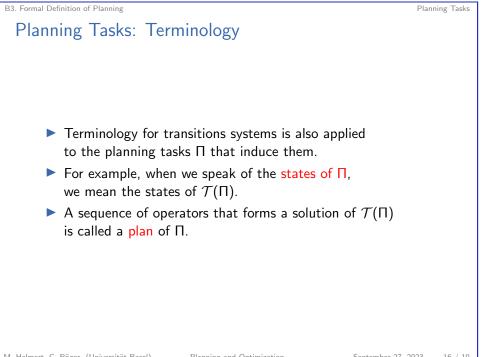
September 27, 2023

13 / 19

15 / 19

B3. Formal Definition of Planning Planning Tasks Mapping Planning Tasks to Transition Systems Definition (Transition System Induced by a Planning Task) The planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_{\star} \rangle$, where \triangleright S is the set of all states over V. \blacktriangleright L is the set of operators O, \triangleright c(o) = cost(o) for all operators $o \in O$. $T = \{ \langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s \llbracket o \rrbracket \},$ \blacktriangleright $s_0 = I$, and $\triangleright \ S_{\star} = \{ s \in S \mid s \models \gamma \}.$


Planning and Optimization


B3. Formal Definition of Planning

Running Example: Planning Task

Example

From the previous chapter, we see that the running example can be represented by the task $\Pi = \langle V, I, O, \gamma \rangle$ with

Planning Tasks

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Definition (Optimal Planning)

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

B3. Formal Definition of Planning

Summary

- Planning tasks compactly represent transition systems and are suitable as inputs for planning algorithms.
- A planning task consists of a set of state variables and an initial state, operators and goal over these state variables.
- We gave formal definitions for these concepts.
- In satisficing planning, we must find a solution for a planning task (or show that no solution exists).
- In optimal planning, we must additionally guarantee that generated solutions are of minimal cost.

B3.3 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization September 27, 2023

M. Helmert, G. Röger (Universität Basel) PL

September 27, 2023

17 / 19

Summary

Planning Tasks

Summary

18 / 19