Planning and Optimization
B2. Introduction to Planning Tasks

Malte Helmert and Gabriele Röger
Universität Basel
September 27, 2023

Planning and Optimization
September 27, 2023 - B2. Introduction to Planning Tasks

B2.1 Introduction
B2.2 State Variables
B2.3 State Formulas
B2.4 Operators and Effects
B2.5 Summary
M. Helmert, G. Röger (Universität Basel)

B2.1 Introduction

- We saw in blocks world:
n blocks \rightsquigarrow number of states exponential in n
- same is true everywhere we look
- known as the state explosion problem

To represent transitions systems compactly, need to tame these exponentially growing aspects:

- states
- goal states
- transitions

B2. Introduction to Planning Tasks

$c\left(m_{1}\right)=5, c\left(m_{2}\right)=5, c\left(l_{1}\right)=1, c\left(l_{2}\right)=1, c(u)=1$

How to specify huge transition systems without enumerating the states?

- represent different aspects of the world
in terms of different (propositional) state variables
- individual state variables are atomic propositions
\rightsquigarrow a state is an interpretation of state variables
- n state variables induce 2^{n} states
\rightsquigarrow exponentially more compact than "flat" representations
Example: n^{2} variables suffice for blocks world with n blocks

Example

$$
\begin{aligned}
s(A-o n-B) & =\mathbf{F} \\
s(A-o n-C) & =\mathbf{F} \\
s(A-o n-t a b l e) & =\mathbf{T} \\
s(B-o n-A) & =\mathbf{T} \\
s(B \text {-on- } C) & =\mathbf{F} \\
s(B-o n-t a b l e) & =\mathbf{F} \\
s(C-o n-A) & =\mathbf{F} \\
s(C \text {-on- } B) & =\mathbf{F} \\
s(C \text {-on-table }) & =\mathbf{T}
\end{aligned}
$$

$\rightsquigarrow 9$ variables for 3 blocks
M. Helmert, G. Röger (Universität Basel)

Definition (Propositional State Variable)

A propositional state variable is a symbol X.
Let V be a finite set of propositional state variables.
A state s over V is an interpretation of V, i.e.,
a truth assignment $s: V \rightarrow\{\mathbf{T}, \mathbf{F}\}$.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
September 27, 2023

- In the running example, we describe 16 states with 4 propositional state variables $\left(2^{4}=16\right)$.

State Variables
Running Example: Opaque States

Intuition: delivery task with 2 trucks, 1 package, locations L and R transition labels:

- m_{1} / m_{2} : move first/second truck
$\rightarrow I_{1} / I_{2}$: load package into first/second truck
- u : unload package from a truck
state variables:
- t_{1} true if first truck is at location L (else at R)
$\rightarrow t_{2}$ true if second truck is at location L (else at R)
$\rightarrow i$ true if package is inside a truck
- w encodes where exactly the package is:
- if i is true, w true if package in first truck
- if i is false, w true if package at location L
M. Helmert. G. Röger (Universität Basel)

Planning and Optimization

B2.4 Operators and Effects

How do we compactly represent transitions?
Definition (Operator)
An operator o over state variables V is an object with three properties:

- a precondition pre(o), a formula over V
- an effect eff(o) over V, defined later in this chapter
- a cost $\operatorname{cost}(o) \in \mathbb{R}_{0}^{+}$

Idea: one operator o for each transition label ℓ, describing
Notes:

- Operators are also called actions.
- Operators are often written as triples $\langle\operatorname{pre}(o), \operatorname{eff}(o), \operatorname{cost}(o)\rangle$.
- This can be abbreviated to pairs \langle pre(o), eff(o) \rangle when the cost of the operator is irrelevant.

Running Example: Operator Preconditions

M. Helmert, G. Röger (Universität Basel) Planning and Optimization
September 27, $2023 \quad 22 / 34$

Syntax of Effects

Definition (Effect)

Effects over propositional state variables V are inductively defined as follows:

- T is an effect (empty effect).
- If $v \in V$ is a propositional state variable,
then v and $\neg v$ are effects (atomic effect).
- If e and e^{\prime} are effects, then ($e \wedge e^{\prime}$) is an effect (conjunctive effect).
- If χ is a formula over V and e is an effect, then $(\chi \triangleright e)$ is an effect (conditional effect).

We may omit parentheses when this does not cause ambiguity.
Example: we will later see that $\left(\left(e \wedge e^{\prime}\right) \wedge e^{\prime \prime}\right)$ behaves identically to $\left(e \wedge\left(e^{\prime} \wedge e^{\prime \prime}\right)\right)$ and will write this as $e \wedge e^{\prime} \wedge e^{\prime \prime}$.
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
September 27, 2023

Running Example: Operator Effects

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

Running Example: Operator Effects

$$
\begin{aligned}
\operatorname{eff}(u)=\neg i & \wedge\left(w \triangleright\left(\left(t_{1} \triangleright w\right) \wedge\left(\neg t_{1} \triangleright \neg w\right)\right)\right) \\
& \wedge\left(\neg w \triangleright\left(\left(t_{2} \triangleright w\right) \wedge\left(\neg t_{2} \triangleright \neg w\right)\right)\right)
\end{aligned}
$$

B2.5 Summary

- Propositional state variables let us compactly describe properties of large transition systems.
- A state is an assignment to a set of state variables.
- Sets of states are represented as formulas over state variables.
- Operators describe when (precondition), how (effect) and at which cost the state of the world can be changed.
- Effects are structured objects including empty, atomic, conjunctive and conditional effects.

