

Planning and Optimization

B2. Introduction to Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

September 27, 2023

Planning and Optimization

September 27, 2023 — B2. Introduction to Planning Tasks

B2.1 Introduction

B2.2 State Variables

B2.3 State Formulas

B2.4 Operators and Effects

B2.5 Summary

Content of this Course

B2.1 Introduction

The State Explosion Problem

- ▶ We saw in blocks world:
 n blocks \rightsquigarrow number of states **exponential** in n
- ▶ same is true everywhere we look
- ▶ known as the **state explosion problem**

To represent transitions systems compactly,
 need to tame these exponentially growing aspects:

- ▶ states
- ▶ goal states
- ▶ transitions

Running Example: Transition System

$$c(m_1) = 5, \quad c(m_2) = 5, \quad c(l_1) = 1, \quad c(l_2) = 1, \quad c(u) = 1$$

B2.2 State Variables

Compact Descriptions of Transition Systems

How to specify huge transition systems
 without enumerating the states?

- ▶ represent different aspects of the world
 in terms of different (propositional) **state variables**
- ▶ individual state variables are atomic propositions
 \rightsquigarrow a state is an **interpretation of state variables**
- ▶ n state variables induce 2^n states
 \rightsquigarrow **exponentially more compact** than “flat” representations

Example: n^2 variables suffice for blocks world with n blocks

Blocks World State with Propositional Variables

Example

$s(A\text{-on-}B) = \mathbf{F}$
 $s(A\text{-on-}C) = \mathbf{F}$
 $s(A\text{-on-table}) = \mathbf{T}$
 $s(B\text{-on-}A) = \mathbf{T}$
 $s(B\text{-on-}C) = \mathbf{F}$
 $s(B\text{-on-table}) = \mathbf{F}$
 $s(C\text{-on-}A) = \mathbf{F}$
 $s(C\text{-on-}B) = \mathbf{F}$
 $s(C\text{-on-table}) = \mathbf{T}$

~ 9 variables for 3 blocks

Propositional State Variables

Definition (Propositional State Variable)

A **propositional state variable** is a symbol X .

Let V be a finite set of propositional state variables.

A **state** s over V is an interpretation of V , i.e., a truth assignment $s : V \rightarrow \{\mathbf{T}, \mathbf{F}\}$.

Running Example: Compact State Descriptions

- In the running example, we describe 16 states with 4 propositional state variables ($2^4 = 16$).

Running Example: Opaque States

Running Example: Using State Variables

state variables $V = \{i, w, t_1, t_2\}$

states shown by true literals

example: $\{i \mapsto \mathbf{T}, w \mapsto \mathbf{F}, t_1 \mapsto \mathbf{T}, t_2 \mapsto \mathbf{F}\} \rightsquigarrow i \neg w \ t_1 \neg t_2$

Running Example: Intuition

Intuition: delivery task with 2 trucks, 1 package, locations L and R
transition labels:

- ▶ m_1/m_2 : move first/second truck
- ▶ l_1/l_2 : load package into first/second truck
- ▶ u : unload package from a truck

state variables:

- ▶ t_1 true if first truck is at location L (else at R)
- ▶ t_2 true if second truck is at location L (else at R)
- ▶ i true if package is inside a truck
- ▶ w encodes where exactly the package is:
 - ▶ if i is true, w true if package in first truck
 - ▶ if i is false, w true if package at location L

B2.3 State Formulas

Representing Sets of States

How do we compactly represent sets of states,
for example the set of goal states?

Idea: formula φ over the state variables represents the models of φ .

Definition (State Formula)

Let V be a finite set of propositional state variables.

A formula over V is a propositional logic formula using V as the set of atomic propositions.

Running Example: Representing Goal States

goal formula $\gamma = \neg i \wedge \neg w$ represents goal states S_*

B2.4 Operators and Effects

Operators Representing Transitions

How do we compactly represent **transitions**?

- most complex aspect of a planning task
- central concept: **operators**

Idea: one operator o for each transition label ℓ , describing

- **in which states** s a transition $s \xrightarrow{\ell} s'$ exists (precondition)
- how state s' **differs** from state s (effect)
- what the **cost** of ℓ is

Syntax of Operators

Definition (Operator)

An **operator** o over state variables V is an object with three properties:

- a **precondition** $pre(o)$, a formula over V
- an **effect** $eff(o)$ over V , defined later in this chapter
- a **cost** $cost(o) \in \mathbb{R}_0^+$

Notes:

- Operators are also called **actions**.
- Operators are often written as triples $(pre(o), eff(o), cost(o))$.
- This can be abbreviated to pairs $(pre(o), eff(o))$ when the cost of the operator is irrelevant.

Running Example: Operator Preconditions

Running Example: Operator Preconditions

$$pre(l_2) = \neg i \wedge (w \leftrightarrow t_2)$$

Syntax of Effects

Definition (Effect)

Effects over propositional state variables V are inductively defined as follows:

- ▶ \top is an effect (**empty effect**).
- ▶ If $v \in V$ is a propositional state variable, then v and $\neg v$ are effects (**atomic effect**).
- ▶ If e and e' are effects, then $(e \wedge e')$ is an effect (**conjunctive effect**).
- ▶ If χ is a formula over V and e is an effect, then $(\chi \triangleright e)$ is an effect (**conditional effect**).

We may omit parentheses when this does not cause ambiguity.

Example: we will later see that $((e \wedge e') \wedge e'')$ behaves identically to $(e \wedge (e' \wedge e''))$ and will write this as $e \wedge e' \wedge e''$.

Effects: Intuition

Intuition for effects:

- ▶ The **empty effect** \top changes nothing.
- ▶ **Atomic effects** can be understood as assignments that update the value of a state variable.
 - ▶ v means " $v := \top$ "
 - ▶ $\neg v$ means " $v := \mathbf{F}$ "
- ▶ A **conjunctive effect** $e = (e' \wedge e'')$ means that both subeffects e and e' take place simultaneously.
- ▶ A **conditional effect** $e = (\chi \triangleright e')$ means that subeffect e' takes place iff χ is true in the state where e takes place.

Running Example: Operator Effects

$$eff(l_1) = (i \wedge w)$$

Running Example: Operator Effects

$$eff(l_2) = (i \wedge \neg w)$$

Running Example: Operator Effects

$$eff(m_1) = ((t_1 \triangleright \neg t_1) \wedge (\neg t_1 \triangleright t_1))$$

Running Example: Operator Effects

$$eff(m_2) = ((t_2 \triangleright \neg t_2) \wedge (\neg t_2 \triangleright t_2))$$

Running Example: Operator Effects

$$eff(u) = \neg i \wedge (w \triangleright ((t_1 \triangleright w) \wedge (\neg t_1 \triangleright \neg w))) \\ \wedge (\neg w \triangleright ((t_2 \triangleright w) \wedge (\neg t_2 \triangleright \neg w)))$$

B2.5 Summary

Summary

- ▶ Propositional **state variables** let us compactly describe properties of large transition systems.
- ▶ A **state** is an assignment to a set of state variables.
- ▶ Sets of states are represented as **formulas** over state variables.
- ▶ **Operators** describe **when** (precondition), **how** (effect) and at which **cost** the state of the world can be changed.
- ▶ **Effects** are structured objects including empty, atomic, conjunctive and conditional effects.