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Getting to Know a Planner

We now play around a bit with a planner and its input:
m look at problem formulation

m run a planner (= planning system/planning algorithm)
m validate plans found by the planner
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Planner: Fast Downward

Fast Downward

We use the Fast Downward planner in this course

m because we know it well (developed by our research group)
m because it implements many search algorithms and heuristics

m because it is the classical planner most commonly used
as a basis for other planners

~> https://www.fast-downward.org
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Validator: VAL

We use the VAL plan validation tool (Fox, Howey & Long)
to independently verify that the plans we generate are correct.

m very useful debugging tool
m https://github.com/KCL-Planning/VAL
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[llustrating Example: 15-Puzzle
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Solving the 15-Puzzle

$ cd demo

$ less tile/puzzle.pddl

$ less tile/puzzleOl.pddl

$ ./fast-downward.py \
tile/puzzle.pddl tile/puzzleOl.pddl \
--heuristic "h=f£()" \
--search "eager_greedy([h],preferred=[h])"

$ validate tile/puzzle.pddl tile/puzzleO1.pddl \
sas_plan
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Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:
m moving different tiles has different cost

m cost of moving tile x = number of prime factors of x

$ cd demo

$ meld tile/puzzle.pddl tile/weight.pddl

$ meld tile/puzzleOl.pddl tile/weightO1.pddl

$ ./fast-downward.py \
tile/weight.pddl tile/weightO1.pddl \
--heuristic "h=f£()" \
--search "eager_greedy([h],preferred=[h])"
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Variation: Glued 15-Puzzle

Glued 15-Puzzle:

m some tiles are glued in place and cannot be moved

$ cd demo
$ meld tile/puzzle.pddl tile/glued.pddl
$ meld tile/puzzleOl.pddl tile/gluedOl.pddl

$ ./fast-downward.py \
tile/glued.pddl tile/glued01.pddl \
——heuristic "h=cgO" \
--search "eager_greedy([h],preferred=[h])"

Note: different heuristic used!
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Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

m Can remove tiles from puzzle frame (creating more blanks)
and reinsert tiles at any blank location.

$ cd demo

$ meld tile/puzzle.pddl tile/cheat.pddl

$ meld tile/puzzleOl.pddl tile/cheatO1l.pddl

$ ./fast-downward.py \
tile/cheat.pddl tile/cheat01.pddl \
--heuristic "h=£ff(" \
--search "eager_greedy([h],preferred=[h])"
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Summary

m We saw planning tasks modeled in the PDDL language.
m We ran the Fast Downward planner and VAL plan validator.

m We made some modifications to PDDL problem formulations
and checked the impact on the planner.
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