Planning and Optimization
A3. Getting to Know a Planner

Malte Helmert and Gabriele Roger

Universitat Basel

September 25, 2023

Content of this Course

—{ Foundations ‘

—{ Approaches ‘

-7—{ Delete Relaxation ‘

—{ Abstraction ‘

— Critical Paths |

—{ Constraints ‘

Fast Downward and VAL

@000

Fast Downward and VAL

Fast Downward and VAL
0000

Summar

Getting to Know a Planner

We now play around a bit with a planner and its input:
m look at problem formulation

m run a planner (= planning system/planning algorithm)
m validate plans found by the planner

Fast Downward and VAL zle Summary
00®0 00

Planner: Fast Downward

Fast Downward

We use the Fast Downward planner in this course

m because we know it well (developed by our research group)
m because it implements many search algorithms and heuristics

m because it is the classical planner most commonly used
as a basis for other planners

~> https://www.fast-downward.org

https://www.fast-downward.org

Fast Downward and VAL 15-Puzzle Summary

[eJe]e]]

Validator: VAL

We use the VAL plan validation tool (Fox, Howey & Long)
to independently verify that the plans we generate are correct.

m very useful debugging tool
m https://github.com/KCL-Planning/VAL

https://github.com/KCL-Planning/VAL

15-Puzzle
00000

15-Puzzle

Fast Downward and VAL

15-Puzzle
0®0000

[llustrating Example: 15-Puzzle

9 2 12 7 1 2 3 4

5 6 14 | 13 5 6 7 8
Z. 11 1 ' 9 10 | 11 | 12
| 15 4 10 8 13 | 14 | 15 .

Summary

Fast Downward and VAL 15-Puzzle Summary

00@000

Solving the 15-Puzzle

$ cd demo

$ less tile/puzzle.pddl

$ less tile/puzzleOl.pddl

$./fast-downward.py \
tile/puzzle.pddl tile/puzzleOl.pddl \
--heuristic "h=f£()" \
--search "eager_greedy([h],preferred=[h])"

$ validate tile/puzzle.pddl tile/puzzleO1.pddl \
sas_plan

Fast Downward and VAL 15-Puzzle Summary

000e00

Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:
m moving different tiles has different cost

m cost of moving tile x = number of prime factors of x

$ cd demo

$ meld tile/puzzle.pddl tile/weight.pddl

$ meld tile/puzzleOl.pddl tile/weightO1.pddl

$./fast-downward.py \
tile/weight.pddl tile/weightO1.pddl \
--heuristic "h=f£()" \
--search "eager_greedy([h],preferred=[h])"

Fast Downward and VAL 15-Puzzle Summary

000080

Variation: Glued 15-Puzzle

Glued 15-Puzzle:

m some tiles are glued in place and cannot be moved

$ cd demo
$ meld tile/puzzle.pddl tile/glued.pddl
$ meld tile/puzzleOl.pddl tile/gluedOl.pddl

$./fast-downward.py \
tile/glued.pddl tile/glued01.pddl \
——heuristic "h=cgO" \
--search "eager_greedy([h],preferred=[h])"

Note: different heuristic used!

Fast Downward and VAL 15-Puzzle Summary

00000e

Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

m Can remove tiles from puzzle frame (creating more blanks)
and reinsert tiles at any blank location.

$ cd demo

$ meld tile/puzzle.pddl tile/cheat.pddl

$ meld tile/puzzleOl.pddl tile/cheatO1l.pddl

$./fast-downward.py \
tile/cheat.pddl tile/cheat01.pddl \
--heuristic "h=£ff(" \
--search "eager_greedy([h],preferred=[h])"

Summarn
0

Summary

nward and VAL

S
o

ummary
°

Summary

m We saw planning tasks modeled in the PDDL language.
m We ran the Fast Downward planner and VAL plan validator.

m We made some modifications to PDDL problem formulations
and checked the impact on the planner.

	Fast Downward and VAL
	

	15-Puzzle
	

	Summary
	

