
Duality in STRIPS planning∗

Martin Suda
Institute for Information Systems, Vienna University of Technology, Austria

Abstract

We describe a duality mapping between STRIPS planning
tasks. By exchanging the initial and goal conditions, taking
their respective complements, and swapping for every action
its precondition and delete list, one obtains for every STRIPS
task its dual version, which has a solution if and only if the
original does. This is proved by showing that the described
transformation essentially turns progression (forward search)
into regression (backward search) and vice versa.
The duality sheds new light on STRIPS planning by allow-
ing a transfer of ideas from one search approach to the other.
It can be used to construct new algorithms from old ones, or
(equivalently) to obtain new benchmarks from existing ones.
Experiments show that the dual versions of IPC benchmarks
are in general quite difficult for modern planners. This may be
seen as a new challenge. On the other hand, the cases where
the dual versions are easier to solve demonstrate that the du-
ality can also be made useful in practice.

1 Introduction
Propositional STRIPS language is one of the favourite for-
malisms for describing planning tasks. A STRIPS task de-
scription consists of an initial and goal condition formed by
conjunctions of propositional atoms and of a set of actions
made up by a precondition, add and delete lists. Despite its
simplicity, the modelling power of the STRIPS formalism
already captures the complexity class PSPACE (Bylander,
1994). Also, STRIPS lies in the core of the more expressive
PDDL language (McDermott, 2000) used for representing
benchmarks in the International Planning Competition.

Classical search is one of the basic but also most success-
ful approaches to determining whether a given planning task
has a solution. The search may proceed either in the forward
direction starting from the initial state and applying actions
until a goal state is reached, or in the backward direction
where the goal condition is regressed over actions to pro-
duce sub-goals until a sub-goal satisfied by the initial state
is obtained. Forward search is typically termed progression,
while backward search is called regression.

∗This research has been conducted at Max-Planck-Institut für
Informatik, Saarbrücken, Germany. The author was also supported
by the ERC Starting Grant 2014 SYMCAR 639270 and the Aus-
trian research project FWF RiSE S11409-N23.

In this paper, we show that from the computational per-
spective there is no real difference between progression and
regression in STRIPS planning. This is very surprising be-
cause progression is working with single states only while
the sub-goal conditions in regression represent whole state
sets. We show this result by describing a duality mapping
working on the domain of all STRIPS planning tasks. Per-
forming regression on the original task is shown equivalent
to performing progression on the dual.

The existence of the duality mapping has some additional
interesting consequences. For instance, any notion originally
conceived and developed with one of the search approaches
in mind has a dual counterpart within the other approach. We
give examples of this phenomenon in Section 5, one of them
being the dual of the relevance condition, an important in-
gredient in pruning the regression search space. The duality
can also be used to construct new algorithms from old ones
and to obtain new benchmarks from existing ones. Thus a
purely theoretical concept at first sight, the duality also has
immediate implications for practice.

The rest of the paper is organized as follows. After giving
the necessary preliminaries in Section 2, we recall the de-
tails about progression and regression relevant for our work
in Section 3. The duality mapping is defined and its prop-
erties are stated and proven in Section 4. We subsequently
discuss immediate theoretical implications of the duality in
Section 5. Section 6 then reports on our experiments. We
compare the performance of several modern planners on
dual versions of IPC benchmarks and also show how a plan-
ner can be adapted with the help of the duality to solve
benchmarks previously out of reach. Finally, in the conclud-
ing Section 7, we discuss the applications of the duality from
a broader perspective.

Previous work. The idea of inverting the search direction
in planning was already considered by Massey (1999) in his
dissertation. Our main theorem can be recovered from that
work, where it follows from a more general, but perhaps a
less elegant result. A proof similar to the one presented here
can be found in Pettersson (2005).

Problem reversal was used by Haslum (2008) to enable
progression-like reachability heuristics being used for re-
gression search. Alcázar and Torralba (2015) use the same
technique to compute backward invariants of planning prob-

21

lems. This is done, however, within the SAS+ formalism and
is therefore not directly comparable to our results.

It seems that although already known, the idea of duality
is not very well known among the planning community. We
hope that the discussion on both its theoretical and practi-
cal implications as well as the experimental evaluation pre-
sented in this paper will trigger further research on this in-
teresting notion.

2 Preliminaries
A propositional STRIPS planning task is defined as a tuple
P = (X, I,G,A), where X is a finite set of atoms, I ⊆ X
is the initial condition, G ⊆ X is the goal condition, and
A a finite set of actions. Every action a ∈ A is a triple a =
(prea, adda, dela) of subsets ofX referred to as the action’s
precondition, add list, and delete list, respectively.

The semantics is given by associating each planning
task P = (X, I,G,A) with a transition system TP =
(S, I, SG, T), where the set of world states S = 2X is iden-
tified with the set of all subsets of X , the initial state is the
subset I , the goal states SG = {s ∈ S | G ⊆ s} are those
states that satisfy the goal conditionG, and, finally, the tran-
sition relation T , which consists of state-action-state triples
called transitions, is defined as follows:

T = {s a→ s′ | prea ⊆ s ∧ s′ = (s ∪ adda) \ dela}.
A planning task has a solution if there is a path in the respec-
tive transition system from the initial state to a goal state,
i.e. if there is a finite sequence of transitions π = s0

a1→
s1

a2→ s2 . . . sk−1
ak→ sk such that s0 = I and sk ∈ SG.

Notice that the path π is fully determined by the sequence of
actions a1, . . . , ak, which we call a plan for P .

3 Progression and regression
There are two basic approaches to searching for solutions
of planning tasks: progression and regression Russell and
Norvig (2010). Progression, or simply forward search, pro-
ceeds systematically from the initial state and applies actions
until a goal state is reached. Regression, or backward search,
on the other hand, regresses the goal condition over actions
to produce sub-goals until a sub-goal contained in the initial
state is obtained.

In what follows we abstract away the actual search algo-
rithm and only focus on properties of the two approaches
that are important for showing their correctness. These prop-
erties depend solely on three “entry point” procedures, by
which the actual search algorithm could be parameterized:

start(), which generates a start search node,

is target(t), which tests whether a given search node
is a target node, and

succ(t), which generates successor nodes t′ of the given
search node t.

Given a plannig taskP = (X, I,G,A), the respective im-
plementations of the procedures for progression and regres-
sion are summarized in Table 1. Let us first focus on pro-
gression. There, each search node directly corresponds to a

world state, or, more specifically, to a world state reachable
from the initial state. The start search node startPr () is
equal to the initial state I itself, the is targetPr (t) pro-
cedure tests whether the given node satisfies the goal con-
dition, and the successor nodes succPr (t) are constructed
by taking for every action a ∈ A for which the applica-
bility condition prea ⊆ t is satisfied the successor node
t′ = (t ∪ adda) \ dela. This naturally corresponds to the
definition of the transition system TP and so the proof of
the following correctness theorem for progression becomes
immediate.

Theorem 1. A planning task P = (X, I,G,A) has a so-
lution if and only if there exists a sequence of search nodes
t0, . . . , tk such that t0 = startPr (), is targetPr (tk),
and for every i = 1, . . . , k ti ∈ succPr (ti−1).

In the case of regression, a search node is also represented
by a subset of X , but it should be viewed as a sub-goal to
be met, corresponding to a set of world states that satisfy
it. Here, the search nodes are manipulated in the following
way. The start search node startRe() is identified with the
(sub-)goal G itself, the is targetRe(t) procedure returns
true if and only if the initial state I satisfies t, and the suc-
cessor search nodes succRe(t) are generated by collecting
the regressed sub-goals t′ = (t \ adda)∪ prea for every ac-
tion a ∈ A for which the consistency condition dela ∩ t = ∅
holds. The key property of regression is that in every world
state s satisfying the regressed sub-goal t′ (i.e., in every s
such that t′ ⊆ s) the action a is applicable (prea ⊆ s) and
leads to a world state that satisfies the original sub-goal t.
Consistency is needed to ensure that the action does not undo
any desired atom.
Remark. Another property that is typically required, apart
from consistency, is relevance. An action a ∈ A is said to be
relevant for achieving a sub-goal t if and only if adda ∩ t 6=
∅, i.e., if when applied, it achieves a part of the sub-goal.
Because relevance is only important for efficiency and not
for correctness of algorithms based on regression, we set it
aside for now, to keep things simple, and return to it in a later
discussion.

The correctness theorem for regression has exactly the
same form as the one for progression. We do not detail its
proof, which is standard and basically just combines the in-
sights mentioned above.

Theorem 2. A planning task P = (X, I,G,A) has a so-
lution if and only if there exists a sequence of search nodes
t0, . . . , tk such that t0 = startRe(), is targetRe(tk),
and for every i = 1, . . . , k ti ∈ succRe(ti−1).

4 Duality
When looking at Table 1, which compares progression and
regression, it is not difficult to observe certain formal simi-
larities. For instance, the role played by the initial condition
I in progression is similar to the one played by G in regres-
sion and vice versa. Similarly, the precondition prea and the
delete list dela of the considered action a seem to be ex-
changing roles in a certain way. In this section we describe
an involutory mapping d : STRIPS → STRIPS acting on

22

progression: Pr regression: Re

start() I G
is-target(t) G ⊆ t t ⊆ I
succ(t) { t′ | ∃a ∈ A . prea ⊆ t ∧ { t′ | ∃a ∈ A . dela ∩ t = ∅ ∧

t′ = (t ∪ adda) \ dela } t′ = (t \ adda) ∪ prea }

Table 1: Instantiating progression and regression for a plannig task P = (X, I,G,A).

the class of all STRIPS planning tasks that shows that the
above similarities are not a coincidence and that progression
and regression are more closely related than is would seem
at first sight.

For an action a = (prea, adda, dela) a dual action ad

is formed by exchanging the precondition and delete list:
ad = (dela, adda, prea). For a set of actions A the set of
dual actions is Ad = {ad | a ∈ A}. Now, given a planning
task P = (X, I,G,A) the dual task Pd is obtained by ex-
changing the initial and goal conditions while taking their
complements with respect to X , and using the dual action
set:

Pd = (X, (X \G), (X \ I),Ad).
It is easy to see that a mapping d defined in this way is in-
deed involutory on the set of STRIPS planning tasks, mean-
ing that (Pd)d = P for every task P . This justifies the use
of the term duality.

We can now state the central theorem about duality.

Theorem 3. For every planning task P = (X, I,G,A) the
dual task Pd has a solution if and only if P does. More
specifically, a sequence of actions a1, . . . , ak is a plan for
P if and only if the sequence adk, . . . , a

d
1 is a plan for Pd.

Proof. If a planning task has a solution, it can be found by
both progression and regression, because they are both cor-
rect (Theorem 1 and 2). We prove this Theorem 3 by show-
ing that regression for P performs exactly the same opera-
tions as progression for Pd when the search nodes are rep-
resented in a complemented form for the latter, i.e. when
storing X \ t in place of t. This is done in three steps corre-
sponding to the three “entry point” procedures of Table 1.

First, we realize that

startRe
P () = X \ startPr

Pd().

In words, the start search node of regression for P , is the
complement (with respect to X) of the start search node of
progression for Pd. Similarly, a search node t ⊆ X is a
target node in regression for P if and only if (X \ t) is a
target node in progression for Pd:

is targetRe
P (t) = is targetPr

Pd(X \ t),
which follows from the equivalence

a ⊆ b↔ (X \ b) ⊆ (X \ a).
Finally, the successor nodes of a search node t ⊆ X in re-
gression for P can be computed as complements of succes-
sor nodes of (X \ t) in progression for Pd:

succRe
P (t) = {(X \ t0) | t0 ∈ succPr

Pd(X \ t)}.

For this last point, it is sufficient to verify for every action
a ∈ A that 1) the consistency condition in regression for P
and applicability condition in progression for Pd are each
other’s dual:

dela ∩ t = ∅ ↔ dela ⊆ (X \ t)
↔ pread ⊆ (X \ t),

and, 2) regressing t over a yields the complement of apply-
ing ad to the complement of t:

X \ ((t \ adda) ∪ prea) = ((X \ t) ∪ adda) \ prea
= ((X \ t) ∪ addad) \ delad .

With these two properties checked (by applying De Mor-
gan’s laws for sets) the theorem is proven by induction over
k, the length of a solution path π = s0

a1→ s1 . . . sk−1
ak→ sk

and the corresponding plan a1, . . . , ak.

5 Implications
The most striking consequence of Theorem 3 is the discov-
ery that in STRIPS planning there is no substantial differ-
ence between progression and regression. Indeed, any algo-
rithm based on one of the two approaches may be effectively
turned into an algorithm based on the other by simply apply-
ing the duality mapping to the input as a preprocessing and
running the actual algorithm on Pd instead of on P . This
transformation obviously preserves the length of the short-
est plan and its cost.

Given this perspective, it is now interesting to observe
what are the dual counterparts of notions that were originally
conceived and developed with only one of the approaches in
mind and in how do they emerge “on the other side of the du-
ality”. We will now comment on some of these observations
in the following subsections.

Relevance and usefulness
It was mentioned before that it is important for the efficiency
of regression to only regress over actions that are relevant
for the current sub-goal. Let us repeat that an action a ∈ A
is relevant for t if and only if adda ∩ t 6= ∅. Regressing
over an action that is not relevant for t results in a (possibly
strictly) stronger sub-goal t′ ⊇ t. We may safely discard
t′ from consideration, because successfully regressing t′ is
(possibly strictly) more difficult than successfully regressing
t.1 This way filtering out non-relevant actions helps to keep
the regression search space manageable.

It is now at hand to ask what the dual notion of relevance
is. For lack of a better word, we call it usefulness. We say

1If solution can be found from t′, it can be found from t as well.

23

that an action a ∈ A is useful in a state t if and only if the
add list of a is not fully contained in t. We see that usefulness
is a natural property: it does not make sense to progress via
a non-useful action, because it will never make more atoms
true in the resulting state. The reason why usefulness is gen-
erally not mentioned in the literature is that in typical bench-
marks there are seldom actions that would be applicable and
yet not useful in a given state. This is in contrast with re-
gression where consistency and non-relevance are far less
correlated.

First add, then delete?
When defining the result of action application to a state, one
needs to decide in which order should the add list and the
delete list be considered. In particular, if a description of a
planning task contains an action a such that adda and dela
have a non-empty intersection, the result of applying a to
a state s depends on this order. One can either exclude this
possibility up front by requiring that for any action the add
and delete lists are disjoint, or, alternatively, to decide on a
canonical order of their application.

There are two remarks we can make here with respect to
duality. First, if we choose the former option above, i.e.,
if we require that adda ∩ dela = ∅ for any a ∈ A, we
should perhaps (for the sake of symmetry) also require that
adda ∩ prea = ∅, because that is exactly the condition un-
der which the order of applying add list and the precondition
during regression of a sub-goal becomes irrelevant. Note that
this condition also makes sense from the perspective of pro-
gression, because atoms mentioned in the precondition will
be preserved by the action anyway (unless deleted) so they
do not need to be mentioned again in the add list.

The second remark relates to the latter option, when in
order to resolve the above situation a particular add-delete
order is chosen as canonical. Here the duality dictates (with
appeal to elegance of the theory) that adding should happen
before deleting, as done in our definition in Section 2. It is
because only with that order the proof of Theorem 3 goes
through as presented.

Let us be more specific. In progression we, quite nat-
urally, first check the applicability condition prea ⊆ s,
before applying the effects. That is why the correspond-
ing regression operation needs to first subtract the add list
from the sub-goal, before adding the preconditions: t′ =
(t \ adda) ∪ prea. Then dualizing the last equation gives us
s′ = (s∪adda)\dela as promised. This should not be inter-
preted as saying that the duality itself relies on a particular
ordering of addition and deletion in the definition of action
application. Should the other order be adopted instead, how-
ever, we would need to require that the actions of a planning
task are normalized beforehand so that the intersection of
add and delete lists is always empty.

Semantics of search nodes
Since the duality exchanges the roles of progression and
regression, one should ask what happens to the semantics
of the search nodes, which are known to represent world
states in progression and sets of world states (via conjunc-
tive conditions) in regression. The surprising answer the du-

ality gives is that both the views are equally valid for both
progression and regression. One just needs to go over to the
complement representation to see the other.

Essentially, nodes in progression can be interpreted as a
conditions, where a condition t stands for all the states s
such that s ⊆ t, i.e. states having at most those positive
facts as those stated in t, but no others. This is because in
STRIPS, we can only make a task of reaching a goal harder
by removing a fact from from a state.

Dually, regression can be thought of as performed over
single states only, the states corresponding to the search
nodes themselves, because we can only make regression
harder by adding facts to such states. We invite the reader to
check the details for herself by replaying the proof of Theo-
rem 3 from this perspective.

Note that this observation provides us with a new way
(arguably less intuitive, but nevertheless a legitimate one) to
justify the correctness of the two approaches. While this may
sometimes simplify argumentations, the actual implementa-
tion “mechanics” remains intact.

Limitations
We close this section by discussing the limitations of the du-
ality concept. A careful analysis of the proof of Theorem 3
reveals that it substantially relies on the particularly simple
form of regression in STRIPS planning. Essential is the fact
that regressed sub-goals may be represented as conjunctions
of atoms. This means the duality does not directly carry over
to more expressive formalisms which allow negated goals or
preconditions. For similar reasons, extending the duality to
Finite Domain Representation (FRD) Helmert (2009) seems
problematic. The good news is that the duality applies to the
lifted version of STRIPS as realized by the STRIPS subset of
the PDDL language McDermott (2000) used in the Interna-
tional Planning Competition (IPC).2 The IPC benchmark set
contains more than a thousand practically relevant problems
to which the duality applies.

6 Experiments
The duality mapping we have described in the previous sec-
tion provides us with a means of transforming one planning
task into another while preserving the existence of its so-
lution. It is now natural to ask how difficult are the dual
versions of IPC benchmarks for modern planners. We per-
formed a series of experiments in order to answer this ques-
tion and we report on them in this section.

Note that there are two possible ways of interpreting the
results. We may either view the dual versions as new stand-
alone problems, or imagine the duality mapping as part of
the algorithm we are currently testing. The second case may
be understood as an evaluation of a new, dual algorithm on
the original benchmarks. We will prefer the first view for
most of this section, but adopt the second where it is more
natural.

For our experiments, we collected all the benchmarks
from the satisficing tracks of the International Planning

2To complement the initial and goal condition, one first obtains
the set of all atoms X by grounding the domain predicates.

24

FF LAMA Mp
ORIG 1009 1192 1114
DUAL 136 175 329

Table 2: First experiment: number of ORIG and DUAL prob-
lems solved within 180 seconds by the respective planners.

Competitions3 (IPC) of years 1998–2011 that are in the
STRIPS subset of the PDDL language.4 Together we col-
lected 1564 problems. We then used the preprocessing part
of the planner FF Hoffmann and Nebel (2001) to produce a
grounded version of these. Note that FF’s relevance analysis
was involved in the process, so all the “rigid” predicates that
are only used for modelling purposes and the value of which
is not affected by any action were removed. Let us denote
the set of these grounded IPC benchmarks ORIG.

The preprocessing tool was then extended further to im-
plement the duality mapping: It first normalizes the actions
so that the precondition and delete list never intersect with
the add list. To conform with the official IPC semantics,
which is ”first delete, then add” Fox and Long (2003), this
is done by performing for every action a the following two
assignments in the prescribed order:

dela := dela \ adda; adda := adda \ prea.
Then the duality mapping is applied. Let the problems ob-
tained this way be denoted as DUAL. All the experiments
were performed our servers with 3.16 GHz Xeon CPU,
16 GB RAM, with Debian 6.0.

In the first experiment we ran the following three planners
on both ORIG and DUAL benchmark sets:

• the FF planner Hoffmann and Nebel (2001) as a base-
line representative of heuristic search Bonet and Geffner
(2001) planners,

• the Fast Downward planner Helmert (2006) in the con-
figuration LAMA-2011 Richter and Westphal (2010), an-
other heuristic search planner, the winner of the satisfyc-
ing track of the last IPC held in 2011, and

• the planner Mp Rintanen (2010), as a representative of
the planning as satisfiability Kautz and Selman (1996) ap-
proach.

The time limit was set to 180 seconds per problem.
The results of the first experiment are summarized in

Table 2. We see that the problems in DUAL are generally
much more difficult to solve than ORIG, and that the SAT-
based planner Mp performs better on DUAL than the heuris-
tic search planners.

We conjecture (and later partially verify) the following
reasons for the difficulty of DUAL. First, the explicit state
forward search planners suffer from not testing for use-
fulness of actions. This corresponds to omitting the rele-
vance test in the dual, regression-based algorithm and makes
the search space unnecessarily large. The second reason
is that invariant information is no longer recovered from

3http://ipc.icaps-conference.org/
4We dropped the action cost feature where present.

FF FF-U FF-UI FF-UIN
DUAL 136 204 682 695

Table 3: Second experiment: number of problems from
DUAL solved within 180 seconds by modifications of the
planner FF.

the task description by the planners. Invariant is a prop-
erty which holds in the initial state and is preserved by all
transitions. While logically redundant, invariants are known
to be usually critical for efficiency of SAT-based planners
Rintanen (2010). Moreover, the existence of simple invari-
ants formed by negative binary clauses is a prerequisite for
the reconstruction of a non-trivial Finite Domain Represen-
tation (FDR), which LAMA is attempting to build in its
preprocessing phase Helmert (2009). As we independently
checked, there are almost no binary clause invariants to be
recovered from the DUAL benchmarks. This means that Mp
has to search for plans without the useful guidance the in-
variants usually provide and LAMA most of the time dis-
covers only trivial, two-valued domains for its finite domain
variables.
Remark. Note that the problems in DUAL still contain the
original invariant information, but it has been turned into
backward invariants, properties of the goal states preserved
when traversing the transitions backwards. Obviously, the
planners do not check for backward invariants, because typ-
ically, e.g., on ORIG, it does not pay off.

In our second experiment, we set out to discover to what
extent do the above reasons explain the degraded perfor-
mance of the planners on DUAL. We focused on the planner
FF for its relative simplicity and modified it in several steps
in order to make it perform better on DUAL. We prepared the
following versions of the planner:

• FF-U, which checks for usefulness of actions and discards
the non-useful ones,

• FF-UI, which additionally computes5 binary clause back-
ward invariant, and discards successor states that violate
it,

• FF-UIN, which additionally turns off enforced hill climb-
ing (see Hoffmann and Nebel (2001)) and always directly
starts best first search.6

We ran all the modifications on DUAL, again with the time
limit of 180 seconds per problem.

The numbers of problems solved by the respective mod-
ifications are shown in Table 3. For the sake of compari-
son we also repeat the result for the original FF. It can be
seen that each of the modifications represents an improve-
ment over the previous version. Probably the most is gained
by incorporating the backward invariant test. Actually, each
modification solves a strict superset of the problems solved

5We use an efficient implementation of the fixpoint algorithm
described in Rintanen (1998).

6We observed that enforced hill climbing fails on most of the
problems in DUAL, so turning it off up front saves some time.

25

FF (unique) FF-DUAL (unique)
PSR (50) 39 (2) 45 (8)
Woodworking (50) 18 (2) 44 (28)
Floortile (20) 7 (0) 17 (10)

Table 4: Third experiment: Comparing FF and FF-DUAL on
three domains where the latter dominates the former. Size of
each domain and the number of problems uniquely solved
by the respective planner are shown in parenthesis.

by the previous one. An exception is the last step where FF-
UI solves 3 problems that FF-UIN cannot solve. However,
FF-UIN solves 16 problems that FF-UI cannot solve within
the given time limit.

Despite our efforts to improve the performance of FF on
DUAL, the planner still solves less problems from DUAL than
from ORIG. In our third experiment, we tried to discover
whether there are some problems in DUAL that the improved
FF-UIN can solve, while the original FF fails on their coun-
terparts in ORIG. This corresponds to the question whether
the duality can be made useful in practice by helping to solve
difficult IPC benchmarks. To simplify the following discus-
sion, let us call by FF-DUAL a planner composed by the pre-
processor, which grounds and dualizes inputs, followed by
FF-UIN. We will now compare FF and FF-DUAL on ORIG.

Apart from six problems from the Mystery domain, where
FF-DUAL correctly discovers that no plan can exists while
FF timeouts, there are three domains where FF-DUAL per-
forms consistently better than FF. Table 4 reports on the
number of problems solved, categorized by the domains.

In order to better understand the success of FF-DUAL on
the three domains, we more closely analyzed and compared
the output of the two versions of the planner. In particular,
we focused on the reported heuristic value of the currently
expanded state. We noticed the following facts.

• On the domain PSR the heuristic value of the initial state
is quite low (between 1 and 10). This holds for both FF
and FF-DUAL, but the value for FF-DUAL is typically
one higher than that for FF. In other words, the dual ver-
sion of relaxed plan heuristic is more informative on PSR.

• On Woodworking, the heuristic value of the initial state
ranges from 5 up to about 70. FF-DUAL’s values are typ-
ically not higher, but stay quite close to those of FF.

• Although on Floortile, FF’s heuristic is more informed
than FF-DUAL’s, FF’s goal agenda mechanism seems
to be making suboptimal decisions in decomposing the
goal into sub-goals. On three problems where FF’s en-
forced hill climbing fails within the time limit and the
goal agenda is discarded, FF then successfully finds a plan
with best first search. At the same time, FF-DUAL di-
rectly looks for a plan using best first search and its less
informed heuristic.

On all the other domains FF-DUAL’s heuristic value of the
initial state is typically much lower than the corresponding
estimate of FF. This might explain the general lower effec-
tiveness of FF-DUAL on the ORIG benchmarks.

To sum up, in our experiments we have shown that the
dual versions of IPC benchmarks are in general much more
difficult to solve by modern planners than the originals. This
can be partially remedied by adapting a planner to make use
of specific features the dual benchmarks possess, but which
are usually missing in the standard ones. Although the imag-
ined dualizing planner FF-DUAL does not beat the original
FF in the overall number of solved problems, there are cer-
tain domains where it indeed pays off to apply the duality
mapping before looking for a plan. This represents one pos-
sible application of the duality concept in practice.

7 Conclusion
In this paper, we have described a duality mapping on the
domain of all STRIPS planning tasks. Its existence shows
that computationally, there is no real difference between per-
forming progression and regression as they are each other’s
dual. Differences between the two that one can measure in
practice follow from asymmetries (with respect to the map-
ping) of the concrete benchmarks and are not inherent to the
search paradigms themselves. We believe that understand-
ing these asymmetries and their influence on the efficiency
of planning algorithms deserves further study.

Furthermore, we have pointed to several applications of
the duality itself. We have shown that new theoretical in-
sights may be obtained by translating known notions via
the mapping and analyzing the obtained duals. For instance,
there necessarily exists a “precondition relaxation heuristic”
a dual of the famous delete relaxation heuristic.

Next we studied the dual versions of the standard IPC
benchmarks and discovered they are quite difficult to solve
for modern planners. One could argue that there is nothing
interesting about difficult benchmarks in themselves if they
do not come from practical applications – for instance, ran-
dom problems form the phase transition region (see Rinta-
nen (2004)) seem to have this status. We, however, do not
think the dual IPC benchmarks fall into the same category.
After all, they still encode the same transition structures as
the originals, albeit in a non-obvious way. Therefore, we be-
lieve they should be considered as an auxiliary test set by
anyone attempting to develop a really versatile planner.

Finally, we explored the possibility of using the duality to
design new algorithms. A simple modification of the planner
FF which uses the duality was shown to improve over the
original system on several benchmark domains. Note that
this obvious schema of first dualizing the input and then run-
ning a known algorithm is not the only option of how the du-
ality can be used. More sophisticated algorithms combining
progression and regression tied together by the duality can
be imagined.

References
Vidal Alcázar and Álvaro Torralba. A reminder about

the importance of computing and exploiting invariants in
planning. In ICAPS 2015, pages 2–6. AAAI Press, 2015.

Blai Bonet and Hector Geffner. Planning as heuristic search.
Artif. Intell., 129(1-2):5–33, 2001.

26

Tom Bylander. The computational complexity of proposi-
tional STRIPS planning. Artif. Intell., 69(1-2):165–204,
1994.

Maria Fox and Derek Long. Pddl2.1: An extension to PDDL
for expressing temporal planning domains. J. Artif. Intell.
Res. (JAIR), 20:61–124, 2003.

P. Haslum. Additive and reversed relaxed reachability
heuristics revisited. In 6th International Planning Com-
petition Booklet (ICAPS-08), 2008.

Malte Helmert. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR), 26:191–246, 2006.

Malte Helmert. Concise finite-domain representations for
PDDL planning tasks. Artif. Intell., 173(5-6):503–535,
2009.

Jörg Hoffmann and Bernhard Nebel. The FF planning sys-
tem: Fast plan generation through heuristic search. J. Ar-
tif. Intell. Res. (JAIR), 14:253–302, 2001.

Henry A. Kautz and Bart Selman. Pushing the enve-
lope: Planning, propositional logic and stochastic search.
In William J. Clancey and Daniel S. Weld, editors,
AAAI/IAAI, Vol. 2, pages 1194–1201. AAAI Press / The
MIT Press, 1996.

Bart Massey. Directions In Planning: Understanding The
Flow Of Time In Planning. PhD thesis, University of Ore-
gon, 1999.

Drew V. McDermott. The 1998 AI planning systems com-
petition. AI Magazine, 21(2):35–55, 2000.

Mats Petter Pettersson. Reversed planning graphs for rel-
evance heuristics in AI planning. In Planning, Schedul-
ing and Constraint Satisfaction: From Theory to Practice,
volume 117 of Frontiers in Artificial Intelligence and Ap-
plications, pages 29–38. IOS Press, 2005.

Silvia Richter and Matthias Westphal. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J.
Artif. Intell. Res. (JAIR), 39:127–177, 2010.

Jussi Rintanen. A planning algorithm not based on direc-
tional search. In Anthony G. Cohn, Lenhart K. Schubert,
and Stuart C. Shapiro, editors, KR 2004, pages 617–625.
Morgan Kaufmann, 1998.

Jussi Rintanen. Phase transitions in classical planning: An
experimental study. In Didier Dubois, Christopher A.
Welty, and Mary-Anne Williams, editors, KR 2004, pages
710–719. AAAI Press, 2004.

Jussi Rintanen. Heuristics for planning with SAT. In David
Cohen, editor, CP 2010, volume 6308 of LNCS, pages
414–428. Springer, 2010.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A
Modern Approach (3. internat. ed.). Pearson Education,
2010.

27

