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Important: For submission, consult the rules at the end of the exercise. Non-
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or, in the worst case, that your submission will not be marked at all.

Exercise 6.1 (0.5+0.5+2+1 marks)

In the pancake problem we have n pancakes with size 1, . . . , n on a pile. The goal is to order the
pile by size, i.e., the largest pancake is on the bottom, the second largest on top of the largest and
so on. The pile can be manipulated by removing a stack of i pancakes from the top and putting it
back in reverse order. Hence, there is an action flipi for all 1 ≤ i ≤ n. The following figure shows
an example instance:

initial state apply flip4 to initial state goal state

Let P = {p1, p2, p3, p4, p5} be the set of pancakes where p1 is the smallest pancake and p5 is the
largest, and let N = {1, 2, 3, 4, 5} be the set of positions in the pile where 1 is on top and 5 is at
the bottom. Consider the following formalization of the above instance of the pancake problem as
a propositional planning task Π = ⟨V, I,O, γ⟩:

• V = {pi-at-j | pi ∈ P, j ∈ N};

• I = {v 7→ T | v ∈ VI} ∪ {v 7→ F | v ∈ V \ VI} with
VI = {p1-at-4, p2-at-2, p3-at-1, p4-at-5, p5-at-3};

• O = {flipi | 1 ≤ i ≤ 5} with flipi = ⟨⊤, effi, 1⟩ such that

effi =
∧
p∈P

i∧
j=1

(p-at-j ▷ (¬p-at-j ∧ p-at-k))

where k = i− j + 1; and

• γ =
∧5

i=1 pi-at-i.

(a) Provide the invariant stating that at most one of p1, p2 and p3 may be on the bottom of the
pile at once.

Note: There is no good reason to leave out p4 and p5 from this invariant apart from reducing
the effort needed to solve this exercise.

(b) Provide a mutex group stating that a certain pancake cannot be at multiple positions in the
pile at once.

(c) Formalize the above pancake instance as a planning task Π′ = ⟨V ′, I ′, O′, γ′⟩ in finite-domain
representation such that V ′ contains exactly one variable per pancake (i.e., |V ′| = 5).

(d) Compare the two planning tasks Π and Π′. How many states does each of them have? How
many of those states are reachable?



Exercise 6.2 (0.5+0.5+0.5+0.5 marks)

In the Sokoban domain, a worker has to push boxes to goal positions, but cannot pull them. The
figure below illustrates an example problem. The goal is to push one box to each tile indicated
by a red dot. (It does not matter which box is located at which position.) In any given state, the
worker may move to an empty tile adjacent to its current location, where empty means that tile
is neither a wall nor there is a box. If there is a box, the worker may still move there if the tile
behind the box (from the worker’s perspective) is empty, pushing the box to that empty tile.

In the following, we suggest four abstraction functions for Sokoban problems. While they might
seem reasonable at a first glance, all of them come with different practical limitations. Point out
and explain the problems with these suggestions in 2–3 sentences each.

(a) α1: Each state is mapped to the number of boxes that are on a goal location.

(b) α2: Each state is mapped to an abstract state by ignoring the position of the agent.

(c) α3: Each state s is mapped to f(s) mod n where f is a bijection from the set of states S
to the natural numbers from 1 to |S| (i.e., f : S → {1, . . . , |S|}) and n = 106 is used to limit
the number of abstract states.

Hint: You may assume that it is possible to evaluate f(s) for a given state s efficiently. In
fact, we will discuss a specific function of this kind in lecture E6 (perfect hash function for
Pattern Database heuristics).

(d) α4: A state is mapped to s1 if 5 or fewer moves are necessary to move all boxes to a goal
location; it is mapped to s2 if between 5 and 10 moves are necessary; and so on.

Exercise 6.3 (0.5+1+1.5+1 marks)

Consider the transition system T = ⟨S,L, c, T, s0, S⋆⟩ with S, L, T , s0 and S⋆ as depicted below
and with c(oi) = i for all 1 ≤ i ≤ 6.
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(a) Consider the abstraction α that maps all states depicted in the same color to the same
abstract state, i.e., α(s1) = sr, α(s2) = α(s3) = α(s4) = sb, α(s5) = sy, and α(s6) =
α(s7) = α(s8) = sg. Graphically provide T α and give hα.

(b) Assume you may change the abstraction α from part (a) by mapping one concrete state to
another (already existing) abstract state. If you care about having some positive effect on
the heuristic quality, which change do you make? Justify your answer. (There are multiple
reasonable options.)

(c) Provide an abstraction β of T such that |Sβ | = 4 and such that there is no abstraction
β′ ̸= β with |Sβ′ | = 4 and hβ′

(s1) > hβ(s1). Graphically provide the transition system T β .

(d) Consider the abstraction α from part (a). Provide an abstraction α′ of T and a function α′′

such that

• α′ ̸= α,

• α′ is a coarsening of α,

• hα′
(s1) = hα(s1), and

• α′ = α′′ ◦ α.
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