
Planning and Optimization

M. Helmert, G. Röger
C. Büchner, R. Christen, S. Dold

University of Basel
Fall Semester 2022

Exercise Sheet 5
Due: November 6, 2023

Important: This exercise sheet is twice the usual workload: It covers two weeks
of lectures, the time between publication and due date spans two weeks, and the
maximal number of marks is 20 instead of the usual 10.
Note: At the time of publishing these exercises, not all topics relevant for solving them were already
discussed in the lecture. Consider to start working on all individual exercises nevertheless, because
the order of the exercises does not strictly follow the course schedule. In particular, exercise 5.3,
which is a programming exercise, has some parts that are covered in the first week of lectures and
others that are covered only in the second week of lectures on delete relaxation.

Important: For submission, consult the rules at the end of the exercise. Non-
adherence to these rules might lead to a penalty in the form of a deduction of marks
or, in the worst case, that your submission will not be marked at all.

Exercise 5.1 (0.5+0.5+0.5+0.5+0.5+0.5 marks)

Consider the STRIPS planning task Π = ⟨V, I,O, γ⟩ with

• V = {a, b, c, d, e};

• I = {a 7→ T, b 7→ F, c 7→ F, d 7→ F, e 7→ F};

• O = {o1, o2, o3, o4} where

– o1 = ⟨a, b ∧ c, 1⟩,
– o2 = ⟨b ∧ c, d, 1⟩,
– o3 = ⟨c,¬c ∧ e, 1⟩, and
– o4 = ⟨d,¬a ∧ e, 1⟩; and

• γ = c ∧ e.

(a) What is the on-set of IJo1K?

(b) Provide a state s ̸= I reachable from I that dominates I.

(c) Provide a state s′ reachable from s that does not dominate s.

(d) Provide an optimal plan for Π.

(e) Provide the delete relaxation Π+ of Π.

(f) Provide an optimal relaxed plan for Π, i.e., a plan for Π+.



Exercise 5.2 (0.5+1.5+0.5+0.5 marks)

Consider the propositional planning task Π = ⟨V, I,O, γ⟩ with

• V = {a, b, c, d, e, f};

• I = {a 7→ T, b 7→ F, c 7→ T, d 7→ F, e 7→ F, f 7→ F};

• O = {o1, o2, o3} where

– o1 = ⟨(a ∨ b) ∧ c, d, 1⟩,
– o2 = ⟨⊤, b ∧ (d▷ e), 1⟩, and
– o3 = ⟨e,¬c ∧ f, 1⟩; and

• γ = c ∧ f .

(a) Is Π in positive normal form? Justify your answer.

(b) Visualize the relaxed task graph for Π.

(c) Is Π relaxed solvable? Justify your answer.

(d) Is Π solvable? Justify your answer.

Exercise 5.3 (3+2+3+2 marks)

Update the course repository (/vagrant/planopt-hs23 in your course VM) with $ git pull.
Navigate to the new directory sheet05 which contains the files required for this exercise. All files
you need to change are in the directory fast-downward/src/search/planopt heuristics/.

For this exercise you may assume that the problems used for testing are STRIPS planning tasks.
When you execute your code, use a time limit of 2 minutes, which can be imposed by executing
ulimit -S -t 120 in the console after logging into the virtual machine. Use the benchmark
instances in the directory castle.

(a) The files and or graph.* contain an implementation of an AND/OR graph. Implement the
method most conservative valuation as outlined in the code comments to find the most
conservative valuation of a given AND/OR graph.

Hint: The method test an or graphs implements the example graphs from the lecture.
You can use them to test and debug your implementation by calling Fast Downward as
./fast-downward.py --test-and-or-graphs.

(b) Implement the method is goal relaxed reachable in relaxed task graph.cc. Then use
the heuristic planopt relaxed task graph() which prunes states that are not relaxed solv-
able based on the result of that function. Use an A∗ search on the instances in the directory
castle and compare the results to blind search (heuristic blind()) with respect to the
number and speed of expansions.

(c) Implement the method weighted most conservative valuation for AND/OR graphs to
compute hadd by following the approach outlined in the code comments. Use a comment to
point out the change you would have to make to turn this into a computation for hmax.

(d) Implement the method additive cost of goal in relaxed task graph.cc. It should re-
turn the hadd value of the task based on the implementation of part (c). Then use the
heuristic planopt add() in an eager greedy search on the instances in the directory castle

and compare the heuristic values of the initial state with the cost of an optimal relaxed plan,
the discovered plan and an optimal plan.

Hint: The values of planopt add() and the built-in implementation of Fast Downward
(add()) should match, so you can use the built-in implementation for debugging part (c).



Exercise 5.4 (1+1+1 marks)

Consider the propositional planning task Π = ⟨V, I,O, γ⟩ in positive normal form with

• V = {a, b, c, d};

• I = {v 7→ F | v ∈ V };

• O = {o1, o2, o3, o4} where

– o1 = ⟨⊤, a ∧ (a▷ b), 3⟩,
– o2 = ⟨a, c, 6⟩,
– o3 = ⟨a ∧ b, c, 1⟩, and
– o4 = ⟨b ∨ c,¬c ∧ d, 2⟩; and

• γ = c ∧ d.

The relaxed task graph for Π looks as follows:

I a b c d

γ

o1,⊤ o1, a o2,⊤

o3,⊤ o4,⊤

(a) Annotate to the left of each node its hmax cost. What is hmax(I)?

(b) Annotate to the right of each node its hadd cost. What is hadd(I)?

(c) Mark all best achievers in the relaxed task graph of Π. What is hFF(I)?

Exercise 5.5 (1 mark)

Which of the heuristics h+, hmax, hadd and hFF would you recommend for an optimal planning
algorithm? Justify why the heuristic you choose is the most appropriate one.



Submission rules:

• Exercise sheets must be submitted in groups of 2–3 students. Create a team on ADAM
including all members of your group and submit a single copy of the exercises per group.

• Create a single PDF file (ending .pdf) for all non-programming exercises. Use a file name
that does not contain any spaces or special characters other than the underscore “ ”. If you
want to submit handwritten solutions, include their scans in the single PDF. Make sure it is
in a reasonable resolution so that it is readable, but ensure at the same time that the PDF
size is not astronomically large. Put the names of all group members on top of the first page.
Either use page numbers on all pages or put your names on each page. Make sure your PDF
has size A4 (fits the page size if printed on A4).

• For programming exercises, only create those code text file(s) required by the exercise. Put
your names in a comment on top of each file. Make sure your code compiles and test it.
Code that does not compile or which we cannot successfully execute will not be graded.

• For the submission: if the exercise sheet does not include programming exercises, simply
upload the single PDF. If the exercise sheet includes programming exercises, upload a ZIP
file (ending .zip, .tar.gz or .tgz; not .rar or anything else) containing the single PDF and the
code text file(s) and nothing else. Do not use directories within the ZIP, i.e., zip the files
directly. After creating your zip file and before submitting it, open the file and verify that
it complies with these requirements.

• Do not upload several versions to ADAM, i.e., if you need to resubmit, use the same file
name again so that the previous submission is overwritten.


