Discrete Mathematics in Computer Science D5. Syntax and Semantics of Predicate Logic

Malte Helmert, Gabriele Röger

University of Basel
December 11/13, 2023

Syntax of Predicate Logic

Limits of Propositional Logic

Cannot be expressed well in propositional logic:
■ "Everyone who does the exercises passes the exam."
■ "If someone with administrator privileges presses 'delete', all data is gone."
■ "Everyone has a mother."

- "If someone is the father of some person, the person is his child."

Limits of Propositional Logic

Cannot be expressed well in propositional logic:
■ "Everyone who does the exercises passes the exam."
■ "If someone with administrator privileges presses 'delete', all data is gone."
■ "Everyone has a mother."

- "If someone is the father of some person, the person is his child."
\triangleright need more expressive logic
\rightsquigarrow predicate logic (a.k.a. first-order logic)
German: Prädikatenlogik (erster Stufe)

Syntax: Building Blocks

■ Signatures define allowed symbols. analogy: atom set A in propositional logic

- Terms are associated with objects by the semantics. no analogy in propositional logic
- Formulas are associated with truth values (true or false) by the semantics.
analogy: formulas in propositional logic

German: Signatur, Term, Formel

Signatures: Definition

Definition (Signature)

A signature (of predicate logic) is a 4-tuple $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ consisting of the following four disjoint sets:

- a finite or countable set \mathcal{V} of variable symbols
- a finite or countable set \mathcal{C} of constant symbols
- a finite or countable set \mathcal{F} of function symbols
- a finite or countable set \mathcal{P} of predicate symbols (or relation symbols)
Every function symbol $\mathrm{f} \in \mathcal{F}$ and predicate symbol $\mathrm{P} \in \mathcal{P}$ has an associated arity $\operatorname{ar}(\mathrm{f}), \operatorname{ar}(\mathrm{P}) \in \mathbb{N}_{1}$ (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Prädikat- und Relationssymbole; Stelligkeit

Signatures: Terminology and Conventions

terminology:

- k-ary (function or predicate) symbol: symbol s with arity $\operatorname{ar}(\mathrm{s})=k$.
- also: unary, binary, ternary

German: k-stellig, unär, binär, ternär
conventions (in this course):
■ variable symbols written in italics, other symbols upright.

- predicate symbols begin with capital letter, other symbols with lower-case letters

Signatures: Examples

Example: Arithmetic

■ $\mathcal{V}=\left\{x, y, z, x_{1}, x_{2}, x_{3}, \ldots\right\}$

- $\mathcal{C}=\{$ zero, one $\}$
- $\mathcal{F}=\{$ sum, product $\}$
- $\mathcal{P}=\{$ Positive, SquareNumber $\}$
$\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2, \operatorname{ar}($ Positive $)=\operatorname{ar}($ SquareNumber $)=1$

Signatures: Examples

Example: Genealogy

■ $\mathcal{V}=\left\{x, y, z, x_{1}, x_{2}, x_{3}, \ldots\right\}$

- $\mathcal{C}=\{$ roger-federer, lisa-simpson $\}$
- $\mathcal{F}=\emptyset$

■ $\mathcal{P}=\{$ Female, Male, Parent $\}$
$\operatorname{ar}($ Female $)=\operatorname{ar}($ Male $)=1, \operatorname{ar}($ Parent $)=2$

Terms: Definition

Definition (Term)

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.
A term (over \mathcal{S}) is inductively constructed according to the following rules:

■ Every variable symbol $v \in \mathcal{V}$ is a term.

- Every constant symbol $\mathrm{c} \in \mathcal{C}$ is a term.

■ If t_{1}, \ldots, t_{k} are terms and $\mathrm{f} \in \mathcal{F}$ is a function symbol with arity k, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.

German: Term

Terms: Definition

Definition (Term)

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.
A term (over \mathcal{S}) is inductively constructed according to the following rules:

■ Every variable symbol $v \in \mathcal{V}$ is a term.

- Every constant symbol $c \in \mathcal{C}$ is a term.

■ If t_{1}, \ldots, t_{k} are terms and $\mathrm{f} \in \mathcal{F}$ is a function symbol with arity k, then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.

German: Term
examples:

- X_{4}
- lisa-simpson
- $\operatorname{sum}\left(x_{3}, \operatorname{product}\left(\right.\right.$ one,$\left.\left.x_{5}\right)\right)$

Formulas: Definition

Definition (Formula)

For a signature $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

- If t_{1}, \ldots, t_{k} are terms (over \mathcal{S}) and $\mathrm{P} \in \mathcal{P}$ is a k-ary predicate symbol, then the atomic formula (or the atom) $\mathrm{P}\left(t_{1}, \ldots, t_{k}\right)$ is a formula over \mathcal{S}.
- If t_{1} and t_{2} are terms (over $\left.\mathcal{S}\right)$, then the identity $\left(t_{1}=t_{2}\right)$ is a formula over \mathcal{S}.
- If $x \in \mathcal{V}$ is a variable symbol and φ a formula over \mathcal{S}, then the universal quantification $\forall x \varphi$ and the existential quantification $\exists x \varphi$ are formulas over \mathcal{S}.

German: atomare Formel, Atom, Identität, Allquantifizierung, Existenzquantifizierung

Formulas: Definition

Definition (Formula)

For a signature $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

- If φ is a formula over \mathcal{S}, then so is its negation $\neg \varphi$.
- If φ and ψ are formulas over \mathcal{S}, then so are the conjunction $(\varphi \wedge \psi)$ and the disjunction $(\varphi \vee \psi)$.

German: Negation, Konjunktion, Disjunktion

Formulas: Examples

Examples: Arithmetic and Genealogy

- Positive $\left(x_{2}\right)$
- $\forall x(\neg$ SquareNumber $(x) \vee$ Positive $(x))$
- $\exists x_{3}\left(\right.$ SquareNumber $\left.\left(x_{3}\right) \wedge \neg \operatorname{Positive~}\left(x_{3}\right)\right)$
- $\forall x(x=y)$
- $\forall x(\operatorname{sum}(x, x)=\operatorname{product}(x$, one $))$
- $\forall x \exists y(\operatorname{sum}(x, y)=z e r o)$

■ $\forall x \exists y(\operatorname{Parent}(y, x) \wedge$ Female $(y))$

Terminology: The symbols \forall and \exists are called quantifiers.
German: Quantoren

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
$\square(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated. For example:

■ $\forall x \forall y \forall z \varphi \rightsquigarrow \forall x y z \varphi$

- $\exists x \exists y \exists z \varphi \rightsquigarrow \exists x y z \varphi$
- $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists x y \forall z \varphi$

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
$\square(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$.
- Sequences of the same quantifier can be abbreviated. For example:
- $\forall x \forall y \forall z \varphi \rightsquigarrow \forall x y z \varphi$

■ $\exists x \exists y \exists z \varphi \rightsquigarrow \exists x y z \varphi$
■ $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists x y \forall z \varphi$
placement of parentheses by convention:

- analogous to propositional logic
- quantifiers \forall and \exists bind more strongly than anything else.

■ example: $\forall x \mathrm{P}(x) \rightarrow \mathrm{Q}(x)$ corresponds to $(\forall x \mathrm{P}(x) \rightarrow \mathrm{Q}(x))$, not $\forall x(\mathrm{P}(x) \rightarrow \mathrm{Q}(x))$.
$\mathcal{S}=\langle\{x, y, z\},\{\mathrm{c}\},\{\mathrm{f}, \mathrm{g}, \mathrm{h}\},\{\mathrm{Q}, \mathrm{R}, \mathrm{S}\}\rangle$ with

$$
\operatorname{ar}(\mathrm{f})=3, \operatorname{ar}(\mathrm{~g})=\operatorname{ar}(\mathrm{h})=1, \operatorname{ar}(\mathrm{Q})=2, \operatorname{ar}(\mathrm{R})=\operatorname{ar}(\mathrm{S})=1
$$

- $\mathrm{f}(x, y)$
- $(\mathrm{g}(x)=\mathrm{R}(y))$
- $(\mathrm{g}(x)=\mathrm{f}(y, \mathrm{c}, \mathrm{h}(x)))$
- $(\mathrm{R}(x) \wedge \forall x \mathrm{~S}(x))$
- $\forall c \mathrm{Q}(\mathrm{c}, x)$
- $(\forall x \exists y(\mathrm{~g}(x)=y) \vee(\mathrm{h}(x)=\mathrm{c}))$

Which expressions are syntactically correct formulas or terms for \mathcal{S} ? What kind of term/formula?

Questions

Questions?

Semantics of Predicate Logic

Semantics: Motivation

■ interpretations in propositional logic: truth assignments for the propositional variables

- There are no propositional variables in predicate logic.
- instead: interpretation determines meaning of the constant, function and predicate symbols.
- meaning of variable symbols not determined by interpretation but by separate variable assignment

Interpretations and Variable Assignments

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Definition (Interpretation, Variable Assignment)

An interpretation (for \mathcal{S}) is a pair $\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ of:

- a non-empty set U called the universe and
- a function ${ }^{\mathcal{I}}$ that assigns a meaning to the constant, function, and predicate symbols:
- $c^{\mathcal{I}} \in U$ for constant symbols $c \in \mathcal{C}$
- $\mathrm{f}^{\mathcal{I}}: U^{k} \rightarrow U$ for k-ary function symbols $\mathrm{f} \in \mathcal{F}$
- $\mathrm{P}^{\mathcal{I}} \subseteq U^{k}$ for k-ary predicate symbols $\mathrm{P} \in \mathcal{P}$

A variable assignment (for \mathcal{S} and universe U)
is a function $\alpha: \mathcal{V} \rightarrow \mathcal{U}$.
German: Interpretation, Universum (or Grundmenge),
Variablenzuweisung

Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{V}=\{x, y, z\}$,
$\mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}, \mathcal{P}=\{$ SquareNumber $\}$ $\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2, \operatorname{ar}($ SquareNumber $)=1$

Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{V}=\{x, y, z\}$,
$\mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}, \mathcal{P}=\{$ SquareNumber $\}$ $\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2, \operatorname{ar}($ SquareNumber $)=1$
$\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ with
■ $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$

- zero $^{\mathcal{I}}=u_{0}$
- one $^{\mathcal{I}}=u_{1}$
- $\operatorname{sum}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i+j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
- $\operatorname{product}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i \cdot j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
- SquareNumber ${ }^{\mathcal{I}}=\left\{u_{0}, u_{1}, u_{2}, u_{4}\right\}$

$$
\alpha=\left\{x \mapsto u_{5}, y \mapsto u_{5}, z \mapsto u_{0}\right\}
$$

Semantics: Informally

Example: $(\forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x)) \wedge \operatorname{Block}(a))$
"For all objects x : if x is a block, then x is red.
Also, the object called a is a block."

- Terms are interpreted as objects.

■ Unary predicates denote properties of objects (to be a block, to be red, to be a square number, ...).
■ General predicates denote relations between objects (to be someone's child, to have a common divisor, ...).
■ Universally quantified formulas (" \forall ") are true if they hold for every object in the universe.
■ Existentially quantified formulas (" \exists ") are true if they hold for at least one object in the universe.

Interpretations of Terms

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Definition (Interpretation of a Term)

Let $\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ be an interpretation for \mathcal{S}, and let α be a variable assignment for \mathcal{S} and universe U.
Let t be a term over \mathcal{S}.
The interpretation of t under \mathcal{I} and α, written as $t^{\mathcal{I}, \alpha}$, is the element of the universe U defined as follows:

- If $t=x$ with $x \in \mathcal{V}(t$ is a variable term $)$:

$$
x^{\mathcal{I}, \alpha}=\alpha(x)
$$

- If $t=\mathrm{c}$ with $\mathrm{c} \in \mathcal{C}$ (t is a constant term):

$$
c^{\mathcal{I}, \alpha}=c^{\mathcal{I}}
$$

- If $t=\mathrm{f}\left(t_{1}, \ldots, t_{k}\right)(t$ is a function term $)$:

$$
\mathfrak{f}\left(t_{1}, \ldots, t_{k}\right)^{\mathcal{I}, \alpha}=\mathrm{f}^{\mathcal{I}}\left(t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{k}^{\mathcal{I}, \alpha}\right)
$$

Interpretations of Terms: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}$, $\operatorname{ar}($ sum $)=\operatorname{ar}($ product $)=2$

Interpretations of Terms: Example

> Example
> signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
> with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{$ zero, one $\}, \mathcal{F}=\{$ sum, product $\}$, ar(sum $)=\operatorname{ar}($ product $)=2$
> $\mathcal{I}=\left\langle U, \mathcal{I}^{\mathcal{I}}\right\rangle$ with
> $■ U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$
> $■$ zero $^{\mathcal{I}}=u_{0}$
> $■ \operatorname{one}^{\mathcal{I}}=u_{1}$
> $■ \operatorname{sum}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i+j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
> $■ \operatorname{product}^{\mathcal{I}}\left(u_{i}, u_{j}\right)=u_{(i \cdot j) \bmod 7}$ for all $i, j \in\{0, \ldots, 6\}$
> $\alpha=\left\{x \mapsto u_{5}, y \mapsto u_{5}, z \mapsto u_{0}\right\}$

Interpretations of Terms: Example (ctd.)

Example (ctd.)
 - zero $^{\mathcal{I}, \alpha}=$
 - $y^{\mathcal{I}, \alpha}=$

- $\operatorname{sum}(x, y)^{\mathcal{I}, \alpha}=$
- $\operatorname{product}(\text { one }, \operatorname{sum}(x, \text { zero }))^{\mathcal{I}, \alpha}=$

Semantics of Predicate Logic Formulas

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Definition (Formula is Satisfied or True)

Let $\mathcal{I}=\left\langle U,{ }^{\mathcal{I}}\right\rangle$ be an interpretation for \mathcal{S}, and let α be a variable assignment for \mathcal{S} and universe U. We say that \mathcal{I} and α satisfy a predicate logic formula φ (also: φ is true under \mathcal{I} and α), written: $\mathcal{I}, \alpha \models \varphi$, according to the following inductive rules:

$$
\begin{aligned}
\mathcal{I}, \alpha \models \mathrm{P}\left(t_{1}, \ldots, t_{k}\right) & \text { iff }\left\langle t_{1}^{\mathcal{I}, \alpha}, \ldots, t_{k}^{\mathcal{I}, \alpha}\right\rangle \in \mathrm{P}^{\mathcal{I}} \\
\mathcal{I}, \alpha \models\left(t_{1}=t_{2}\right) & \text { iff } t_{1}^{\mathcal{I}, \alpha}=t_{2}^{\mathcal{I}, \alpha} \\
\mathcal{I}, \alpha \models \neg \varphi & \text { iff } \mathcal{I}, \alpha \not \models \varphi \\
\mathcal{I}, \alpha \models(\varphi \wedge \psi) & \text { iff } \mathcal{I}, \alpha=\varphi \text { and } \mathcal{I}, \alpha \models \psi \\
\mathcal{I}, \alpha \models(\varphi \vee \psi) & \text { iff } \mathcal{I}, \alpha=\varphi \text { or } \mathcal{I}, \alpha=\psi
\end{aligned}
$$

German: \mathcal{I} und α erfüllen φ (also: φ ist wahr unter \mathcal{I} und α)

Semantics of Predicate Logic Formulas

Let $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$ be a signature.

Definition (Formula is Satisfied or True)

$$
\begin{array}{ll}
\mathcal{I}, \alpha \models \forall x \varphi & \text { iff } \mathcal{I}, \alpha[x:=u] \models \varphi \text { for all } u \in U \\
\mathcal{I}, \alpha \models \exists x \varphi & \text { iff } \mathcal{I}, \alpha[x:=u] \models \varphi \text { for at least one } u \in U
\end{array}
$$

where $\alpha[x:=u]$ is the same variable assignment as α, except that it maps variable x to the value u.
Formally:
$(\alpha[x:=u])(z)= \begin{cases}u & \text { if } z=x \\ \alpha(z) & \text { if } z \neq x\end{cases}$

Semantics: Example

Example

signature: $\mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle$
with $\mathcal{V}=\{x, y, z\}, \mathcal{C}=\{\mathrm{a}, \mathrm{b}\}, \mathcal{F}=\emptyset, \mathcal{P}=\{$ Block, Red $\}$, $\operatorname{ar}($ Block $)=\operatorname{ar}($ Red $)=1$.

Semantics: Example

$$
\begin{aligned}
& \text { Example } \\
& \text { signature: } \mathcal{S}=\langle\mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P}\rangle \\
& \text { with } \mathcal{V}=\{x, y, z\}, \mathcal{C}=\{\mathrm{a}, \mathrm{~b}\}, \mathcal{F}=\emptyset, \mathcal{P}=\{\text { Block, Red }\}, \\
& \operatorname{ar}(\text { Block })=\operatorname{ar}(\text { Red })=1 . \\
& \mathcal{I}=\langle U, \cdot \mathcal{I}\rangle \text { with } \\
& ■ \mathcal{U}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\} \\
& ■ \mathrm{a}^{\mathcal{I}}=u_{1} \\
& ■ \mathrm{~b}^{\mathcal{I}}=u_{3} \\
& ■ \operatorname{Block}^{\mathcal{I}}=\left\{u_{1}, u_{2}\right\} \\
& ■ \operatorname{Red}^{\mathcal{I}}=\left\{u_{1}, u_{2}, u_{3}, u_{5}\right\} \\
& \alpha=\left\{x \mapsto u_{1}, y \mapsto u_{2}, z \mapsto u_{1}\right\}
\end{aligned}
$$

Semantics: Example (ctd.)

Example (ctd.)

Questions:
■ $\mathcal{I}, \alpha \models(\operatorname{Block}(\mathrm{b}) \vee \neg \operatorname{Block}(\mathrm{b}))$?

- I,$\alpha=(\operatorname{Block}(x) \rightarrow(\operatorname{Block}(x) \vee \neg \operatorname{Block}(y)))$?

■ $\mathcal{I}, \alpha=(\operatorname{Block}(\mathrm{a}) \wedge \operatorname{Block}(\mathrm{b}))$?
■ $\mathcal{I}, \alpha \models \forall x(\operatorname{Block}(x) \rightarrow \operatorname{Red}(x))$?

Questions

Questions?

Summary

- Predicate logic is more expressive than propositional logic and allows statements over objects and their properties.
- Objects are described by terms that are built from variable, constant and function symbols.
- Properties and relations are described by formulas that are built from predicates, quantifiers and the usual logical operators.

