Discrete Mathematics in Computer Science D3. Normal Forms and Logical Consequence

Malte Helmert, Gabriele Röger

University of Basel

December 4/6, 2023

Discrete Mathematics in Computer Science December 4/6, 2023 — D3. Normal Forms and Logical Consequence

D3.1 Simplified Notation

D3.2 Normal Forms

D3.3 Knowledge Bases

D3.4 Logical Consequences

D3.1 Simplified Notation

Parentheses

Associativity:

$$((\varphi \wedge \psi) \wedge \chi) \equiv (\varphi \wedge (\psi \wedge \chi))$$

 $((\varphi \vee \psi) \vee \chi) \equiv (\varphi \vee (\psi \vee \chi))$

- Placement of parentheses for a conjunction of conjunctions does not influence whether an interpretation is a model.
- ditto for disjunctions of disjunctions
- $\rightarrow\,$ can omit parentheses and treat this as if parentheses placed arbitrarily
- Example: $(A_1 \wedge A_2 \wedge A_3 \wedge A_4)$ instead of $((A_1 \wedge (A_2 \wedge A_3)) \wedge A_4)$
- **Example:** $(\neg A \lor (B \land C) \lor D)$ instead of $((\neg A \lor (B \land C)) \lor D)$

Parentheses

Does this mean we can always omit all parentheses and assume an arbitrary placement? $\rightarrow No!$

$$((\varphi \wedge \psi) \vee \chi) \not\equiv (\varphi \wedge (\psi \vee \chi))$$

What should $\varphi \wedge \psi \vee \chi$ mean?

5 / 33

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- ▶ ¬ binds more strongly than ∧
- ▶ ∧ binds more strongly than ∨
- \triangleright \lor binds more strongly than \rightarrow or \leftrightarrow
- → cf. PEMDAS/"Punkt vor Strich"

Example

$$\mathsf{A} \vee \neg \mathsf{C} \wedge \mathsf{B} \to \mathsf{A} \vee \neg \mathsf{D} \text{ stands for } ((\mathsf{A} \vee (\neg \mathsf{C} \wedge \mathsf{B})) \to (\mathsf{A} \vee \neg \mathsf{D}))$$

- often harder to read
- error-prone
- → not used in this course

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$
$$\sum_{x \in \{x_1, \dots, x_n\}} x = x_1 + x_2 + \dots + x_n$$

Analogously:

$$\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n})$$

$$\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n})$$

$$\bigwedge_{\varphi \in X} \varphi = (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n})$$

$$\bigvee_{\varphi \in X} \varphi = (\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n})$$
for $X = \{\varphi_{1}, \dots, \varphi_{n}\}$

Short Notation: Corner Cases

Is $\mathcal{I} \models \psi$ true for

$$\psi = \bigwedge_{\varphi \in X} \varphi$$
 and $\psi = \bigvee_{\varphi \in X} \varphi$

if
$$X = \emptyset$$
 or $X = {\chi}$?

convention:

- $\blacktriangleright \bigwedge_{\varphi \in \emptyset} \varphi$ is a tautology.
- $\bigvee_{\varphi \in \emptyset} \varphi$ is unsatisfiable.

→ Why?

Exercise

Express $\bigwedge_{i=1}^2 \bigvee_{j=1}^3 \varphi_{ij}$ without \bigwedge and \bigvee .

D3.2 Normal Forms

Why Normal Forms?

- A normal form is a representation with certain syntactic restrictions.
- condition for reasonable normal form: every formula must have a logically equivalent formula in normal form
- advantages:
 - can restrict proofs to formulas in normal form
 - can define algorithms only for formulas in normal form

German: Normalform

Literals, Clauses and Monomials

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and ¬A).
- A clause is a disjunction of literals (e.g., $(Q \lor \neg P \lor \neg S \lor R)$).
- A monomial is a conjunction of literals (e.g., $(Q \land \neg P \land \neg S \land R)$).

The terms clause and monomial are also used for the corner case with only one literal.

German: Literal, Klausel, Monom

Terminology: Examples

Examples

- $ightharpoonup (\neg Q \land R)$ is a monomial
- \triangleright (P $\vee \neg$ Q) is a clause
- $ightharpoonup ((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- ▶ ¬P is a literal, a clause and a monomial
- ightharpoonup (P ightharpoonup Q) is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- $ightharpoonup (P \lor P)$ is a clause, but not a literal or monomial
- ► ¬¬P is neither literal nor clause nor monomial

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, i. e., if it has the form

$$\bigwedge_{i=1}^{n}\bigvee_{j=1}^{m_{i}}L_{ij}$$

with $n, m_i > 0$ (for $1 \le i \le n$), where the L_{ii} are literals.

German: konjunktive Normalform (KNF)

Example

$$((\neg P \lor Q) \land R \land (P \lor \neg S))$$
 is in CNF.

Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF) if it is a disjunction of monomials, i.e., if it has the form

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} L_{ij}$$

with $n, m_i > 0$ (for $1 \le i \le n$), where the L_{ii} are literals.

German: disjunktive Normalform (DNF)

Example

$$((\neg P \land Q) \lor R \lor (P \land \neg S))$$
 is in DNF.

CNF and DNF: Examples

Which of the following formulas are in CNF? Which are in DNF?

- \blacktriangleright ((P $\lor \neg Q$) \land P)
- $\blacktriangleright ((R \lor Q) \land P \land (R \lor S))$
- $\blacktriangleright (P \lor (\neg Q \land R))$
- $((P \lor \neg Q) \to P)$
- ► P

Construction of CNF (and DNF)

Algorithm to Construct CNF

- **1** Replace abbreviations \rightarrow and \leftrightarrow by their definitions $((\rightarrow)$ -elimination and (\leftrightarrow) -elimination).
 - \rightarrow formula structure: only \vee , \wedge , \neg
- Move negations inside using De Morgan and double negation.
 - \rightsquigarrow formula structure: only \lor , \land , literals
- Distribute ∨ over ∧ with distributivity (strictly speaking also with commutativity).
 - → formula structure: CNF
- optionally: Simplify the formula at the end or at intermediate steps (e.g., with idempotence).

Note: For DNF, distribute \land over \lor instead.

Constructing CNF: Example

```
Construction of Conjunctive Normal Form
Given: \varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))
           \varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T))
                                                                                      [Step 1]
               \equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T))
                                                                                      [Step 2]
               \equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))
                                                                                      [Step 2]
               \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg (S \lor T))
                                                                                      [Step 2]
               \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))
                                                                                      [Step 2]
               \equiv ((\neg P \lor Q \lor P \lor (\neg S \land \neg T)) \land 
                   (\neg R \lor P \lor (\neg S \land \neg T)))
                                                                                      [Step 3]
               \equiv (\neg R \lor P \lor (\neg S \land \neg T))
                                                                                      [Step 4]
               \equiv ((\neg R \lor P \lor \neg S) \land (\neg R \lor P \lor \neg T))
                                                                                      [Step 3]
```

Construct DNF: Example

```
Construction of Disjunctive Normal Form
Given: \varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))
     \varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T))
                                                                                           [Step 1]
         \equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T))
                                                                                           [Step 2]
        \equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))
                                                                                           [Step 2]
         \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg (S \lor T))
                                                                                           [Step 2]
         \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))
                                                                                           [Step 2]
        \equiv ((\neg P \land \neg R) \lor (Q \land \neg R) \lor P \lor (\neg S \land \neg T))
                                                                                           [Step 3]
```

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- "There is a" always means "there is at least one". Otherwise we would write "there is exactly one".
- Intuition: algorithm to construct normal form works with any given formula and only uses equivalence rewriting.
- actual proof would use induction over structure of formula

Size of Normal Forms

- ► In the worst case, a logically equivalent formula in CNF or DNF can be exponentially larger than the original formula.
- **Example:** for $(x_1 \lor y_1) \land \cdots \land (x_n \lor y_n)$ there is no smaller logically equivalent formula in DNF than:

$$\bigvee_{S \in \mathcal{P}(\{1,\ldots,n\})} \left(\bigwedge_{i \in S} x_i \wedge \bigwedge_{i \in \{1,\ldots,n\} \setminus S} y_i \right)$$

As a consequence, the construction of the CNF/DNF formula can take exponential time.

More Theorems

Theorem

A formula in CNF is a tautology iff every clause is a tautology.

Theorem

A formula in DNF is satisfiable iff at least one of its monomials is satisfiable.

→ both proved easily with semantics of propositional logic

22 / 33

D3.3 Knowledge Bases

Knowledge Bases: Example

If not DrinkBeer, then EatFish. If EatFish and DrinkBeer, then not EatIceCream. If EatIceCream or not DrinkBeer, then not EatFish.

```
KB = \{ (\neg DrinkBeer \rightarrow EatFish), \}
          ((EatFish \land DrinkBeer) \rightarrow \neg EatIceCream),
          ((EatlceCream \lor \neg DrinkBeer) \rightarrow \neg EatFish))
```

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

Knowledge Bases

Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A, i. e., a set of propositional formulas over A.

A truth assignment \mathcal{I} for A is a model for KB (written: $\mathcal{I} \models KB$) if \mathcal{I} is a model for every formula $\varphi \in KB$.

German: Wissensbasis, Modell

Properties of Sets of Formulas

A knowledge base KB is

- satisfiable if KB has at least one model.
- unsatisfiable if KB is not satisfiable
- valid (or a tautology) if every interpretation is a model for KB
- falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Example I

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}$ have?

KB is unsatisfiable:

For every model \mathcal{I} with $\mathcal{I} \models (A \land \neg B)$ we have $\mathcal{I}(A) = 1$. This means $\mathcal{I} \models (\mathsf{B} \lor \mathsf{A})$ and thus $\mathcal{I} \not\models \neg(\mathsf{B} \lor \mathsf{A})$.

This directly implies that KB is falsifiable, not satisfiable and no tautology.

27 / 33

Example II

Which of the properties does

```
KB = \{ (\neg DrinkBeer \rightarrow EatFish), \}
          ((EatFish \land DrinkBeer) \rightarrow \neg EatIceCream),
          ((EatIceCream \lor \neg DrinkBeer) \rightarrow \neg EatFish)\} have?
```

- satisfiable, e.g. with $\mathcal{I} = \{ \mathsf{EatFish} \mapsto 1, \mathsf{DrinkBeer} \mapsto 1, \mathsf{EatIceCream} \mapsto 0 \}$
- thus not unsatisfiable
- falsifiable, e. g. with $\mathcal{I} = \{ \mathsf{EatFish} \mapsto \mathsf{0}, \mathsf{DrinkBeer} \mapsto \mathsf{0}, \mathsf{EatIceCream} \mapsto \mathsf{1} \}$
- thus not valid

D3.4 Logical Consequences

Logical Consequences: Motivation

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal. I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

We say that KB logically implies φ (written as KB $\models \varphi$) if all models of KB are also models of φ .

also: KB logically entails φ , φ logically follows from KB, φ is a logical consequence of KB

German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": $KB \models \varphi$ vs. $\mathcal{I} \models \varphi$.

What if KB is unsatisfiable or the empty set?

Logical Consequences: Example

```
Let \varphi = DrinkBeer and
         KB = \{ (\neg DrinkBeer \rightarrow EatFish), \}
                    ((EatFish \land DrinkBeer) \rightarrow \neg EatIceCream),
                   ((EatlceCream \lor \neg DrinkBeer) \rightarrow \neg EatFish).
```

Show: KB $\models \varphi$

```
Proof sketch.
Proof by contradiction: assume \mathcal{I} \models KB, but \mathcal{I} \not\models DrinkBeer.
Then it follows that \mathcal{I} \models \neg \mathsf{DrinkBeer}.
Because \mathcal{I} is a model of KB, we also have
\mathcal{I} \models (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}) \text{ and thus } \mathcal{I} \models \mathsf{EatFish}. \text{ (Why?)}
With an analogous argumentation starting from
\mathcal{I} \models ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \to \neg \mathsf{EatFish})
we get \mathcal{I} \models \neg \mathsf{EatFish} and thus \mathcal{I} \not\models \mathsf{EatFish}. \rightsquigarrow Contradiction!
```

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

 $\mathsf{KB} \cup \{\varphi\} \models \psi \text{ iff } \mathsf{KB} \models (\varphi \rightarrow \psi)$

German: Deduktionssatz

Theorem (Contraposition Theorem)

 $\mathsf{KB} \cup \{\varphi\} \models \neg \psi \text{ iff } \mathsf{KB} \cup \{\psi\} \models \neg \varphi$

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

 $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$

German: Widerlegungssatz

(without proof)