Discrete Mathematics in Computer Science D1. Syntax and Semantics of Propositional Logic

Malte Helmert, Gabriele Röger

University of Basel

November 22/27, 2023

Introduction to Formal Logic

Why Logic?

- formalizing mathematics
 - What is a true statement?
 - What is a valid proof?
 - What can and cannot be proved?
- basis of many tools in computer science
 - design of digital circuits
 - semantics of databases; query optimization
 - meaning of programming languages
 - verification of safety-critical hardware/software
 - knowledge representation in artificial intelligence
 - logic-based programming languages (e.g. Prolog)
 - ...

Application: Logic Programming I

Declarative approach: Describe what to accomplish, not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors so that no two adjacent regions have the same color.

This is a hard problem!

CC BY-SA 3.0 Wikimedia Commons (TUBS)

Application: Logic Programming II

```
Prolog program
color(red). color(blue). color(green). color(yellow).
differentColor(ColorA, ColorB) :-
    color(ColorA), color(ColorB),
    ColorA \= ColorB.
switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,
            JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG,
            TI, UR, VD, VS, ZG, ZH) :-
    differentColor(AG, BE), differentColor(AG, BL),
    . . .
    differentColor(VD, VS), differentColor(ZH, ZG).
```

What Logic is About

General Question:

- Given some knowledge about the world (a knowledge base)
- what can we derive from it?
- And on what basis may we argue?

→ logic

Goal: "mechanical" proofs

- formal "game with letters"
- detached from a concrete meaning

Running Example

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:

- propositions are statements that can be either true or false
- atomic propositions cannot be split into subpropositions
- logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage, Junktoren/logische Verknüpfungen

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

 Every sentence is a proposition that consists of subpropositions (e.g., "eat ice cream or don't drink beer").

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- Every sentence is a proposition that consists of subpropositions (e.g., "eat ice cream or don't drink beer").
- atomic propositions "drink beer", "eat fish", "eat ice cream"

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- Every sentence is a proposition that consists of subpropositions (e.g., "eat ice cream or don't drink beer").
- atomic propositions "drink beer", "eat fish", "eat ice cream"
- logical connectives "and", "or", negation, "if, then"

If I don't drink beer to a meal, then I always eat fish.

Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

If I don't drink beer to a meal, then I always eat fish.

Whenever I have fish and beer with the same meal, I abstain from ice cream.

When I eat ice cream or don't drink beer, then I never touch fish.

"irrelevant" information

If I don't drink beer, then I eat fish. Whenever I have fish and beer, I abstain from ice cream.

When I eat ice cream or don't drink beer, then I never touch fish.

"irrelevant" information

If I don't drink beer, then I eat fish. Whenever I have fish and beer, I abstain from ice cream.

When I eat ice cream or don't drink beer, then I never touch fish.

- "irrelevant" information
- different formulations for the same connective/proposition

If I don't drink beer, then I eat fish. Whenever I have fish and beer, I abstain from ice cream.

When I eat ice cream or don't drink beer, then I never touch fish.

- "irrelevant" information
- different formulations for the same connective/proposition

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,
then not EatIceCream.
If EatIceCream or not DrinkBeer,
then not EatFish.

- "irrelevant" information
- different formulations for the same connective/proposition

What is Next?

- What are meaningful (well-defined) sequences of atomic propositions and connectives?
 "if then EatlceCream not or DrinkBeer and" not meaningful → syntax
- What does it mean if we say that a statement is true? Is "DrinkBeer and EatFish" true?
 - → semantics
- When does a statement logically follow from another? Does "EatFish" follow from "if DrinkBeer, then EatFish"? → logical entailment

German: Syntax, Semantik, logische Folgerung

Syntax of Propositional Logic

Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional formulas (over A) is inductively defined as follows:

- Every atom $a \in A$ is a propositional formula over A.
- If φ is a propositional formula over A, then so is its negation $\neg \varphi$.
- If φ and ψ are propositional formulas over A, then so is the conjunction $(\varphi \wedge \psi)$.
- If φ and ψ are propositional formulas over A, then so is the disjunction $(\varphi \lor \psi)$.

The implication $(\varphi \to \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$. The biconditional $(\varphi \leftrightarrow \psi)$ is an abbrev. for $((\varphi \to \psi) \land (\psi \to \varphi))$. German: atomare Aussage, aussagenlogische Formel, Atom, Negation, Konjunktion, Disjunktion, Implikation, Bikonditional

Syntax: Examples

Which of the following sequences of symbols are propositional formulas over the set of all possible letter sequences? Which kinds of formula are they (atom, conjunction, \dots)?

- **■** (A ∧ (B ∨ C))
- \neg (\land Rain \lor StreetWet)
- ¬(Rain ∨ StreetWet)
- ((EatFish \land DrinkBeer) $\rightarrow \neg$ EatIceCream)
- Rain ∧ ¬Rain
- ¬(A = B)
- $\blacksquare (A \land \neg (B \leftrightarrow) C)$
- $((A \leq B) \wedge C)$
- (A ∨ ¬(B ↔ C))
- $\bullet ((\mathsf{A}_1 \land \mathsf{A}_2) \lor \neg (\mathsf{A}_3 \leftrightarrow \mathsf{A}_2))$

Semantics of Propositional Logic

Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences without any meaning.

For example, what does this mean: $((EatFish \land DrinkBeer) \rightarrow \neg EatIceCream)$?

▶ We need semantics!

Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic propositions A is a function $\mathcal{I}:A\to\{0,1\}$.

A propositional formula φ (over A) holds under \mathcal{I} (written as $\mathcal{I} \models \varphi$) according to the following definition:

```
 \begin{array}{llll} \mathcal{I} \models \mathsf{a} & \text{iff} & \mathcal{I}(\mathsf{a}) = 1 & \text{(for } \mathsf{a} \in \mathsf{A}) \\ \mathcal{I} \models \neg \varphi & \text{iff} & \mathsf{not} \ \mathcal{I} \models \varphi \\ \mathcal{I} \models (\varphi \land \psi) & \text{iff} & \mathcal{I} \models \varphi \ \mathsf{and} \ \mathcal{I} \models \psi \\ \mathcal{I} \models (\varphi \lor \psi) & \text{iff} & \mathcal{I} \models \varphi \ \mathsf{or} \ \mathcal{I} \models \psi \\  \end{array}
```

Question: should we define semantics of $(\varphi \to \psi)$ and $(\varphi \leftrightarrow \psi)$?

German: Wahrheitsbelegung/Interpretation, φ gilt unter \mathcal{I}

Semantics of Propositional Logic: Terminology

- For $\mathcal{I} \models \varphi$ we also say \mathcal{I} is a model of φ and that φ is true under \mathcal{I} .
- If φ does not hold under \mathcal{I} , we write this as $\mathcal{I} \not\models \varphi$ and say that \mathcal{I} is no model of φ and that φ is false under \mathcal{I} .
- Note: ⊨ is not part of the formula but part of the meta language (speaking about a formula).

German: $\mathcal I$ ist ein/kein Modell von φ ; φ ist wahr/falsch unter $\mathcal I$; Metasprache

Exercise

Consider the set $A = \{X, Y, Z\}$ of atomic propositions and formula $\varphi = (X \land \neg Y)$.

Specify an interpretation $\mathcal I$ for A with $\mathcal I \models \varphi$.

Semantics: Example (1)

```
\begin{split} &A = \{\mathsf{DrinkBeer}, \mathsf{EatFish}, \mathsf{EatIceCream}\} \\ &\mathcal{I} = \{\mathsf{DrinkBeer} \mapsto 1, \mathsf{EatFish} \mapsto 0, \mathsf{EatIceCream} \mapsto 1\} \\ &\varphi = (\neg \mathsf{DrinkBeer} \to \mathsf{EatFish}) \end{split}
```

Do we have $\mathcal{I} \models \varphi$?

Semantics: Example (2)

Goal: prove $\mathcal{I} \models \varphi$.

Let us use the definitions we have seen:

$$\mathcal{I} \models \varphi \text{ iff } \mathcal{I} \models (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish})$$

$$\text{iff } \mathcal{I} \models (\neg \neg \mathsf{DrinkBeer} \lor \mathsf{EatFish})$$

$$\text{iff } \mathcal{I} \models \neg \neg \mathsf{DrinkBeer} \text{ or } \mathcal{I} \models \mathsf{EatFish}$$

This means that if we want to prove $\mathcal{I} \models \varphi$, it is sufficient to prove

$$\mathcal{I} \models \neg \neg \mathsf{DrinkBeer}$$

or to prove

$$\mathcal{I} \models \mathsf{EatFish}.$$

We attempt to prove the first of these statements.

Semantics: Example (3)

New goal: prove $\mathcal{I} \models \neg \neg \mathsf{DrinkBeer}$.

We again use the definitions:

$$\mathcal{I} \models \neg\neg \mathsf{DrinkBeer} \text{ iff not } \mathcal{I} \models \neg \mathsf{DrinkBeer} \\ \text{iff not not } \mathcal{I} \models \mathsf{DrinkBeer} \\ \text{iff } \mathcal{I} \models \mathsf{DrinkBeer} \\ \text{iff } \mathcal{I}(\mathsf{DrinkBeer}) = 1$$

The last statement is true for our interpretation \mathcal{I} .

To write this up as a proof of $\mathcal{I}\models\varphi$, we can go through this line of reasoning back-to-front, starting from our assumptions and ending with the conclusion we want to show.

Semantics: Example (4)

Let $\mathcal{I} = \{ \mathsf{DrinkBeer} \mapsto 1, \mathsf{EatFish} \mapsto 0, \mathsf{EatIceCream} \mapsto 1 \}.$ Proof that $\mathcal{I} \models (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish})$:

- ① We have $\mathcal{I} \models \mathsf{DrinkBeer}$ (uses defn. of \models for atomic props. and fact $\mathcal{I}(\mathsf{DrinkBeer}) = 1$).
- From (2), we get \mathcal{I} |= ¬¬DrinkBeer (uses defn. of |= for negations).
- **③** From (3), we get $\mathcal{I} \models (\neg \neg \mathsf{DrinkBeer} \lor \psi)$ for all formulas ψ , in particular $\mathcal{I} \models (\neg \neg \mathsf{DrinkBeer} \lor \mathsf{EatFish})$ (uses defn. of \models for disjunctions).
- From (4), we get \mathcal{I} |= (¬DrinkBeer → EatFish) (uses defn. of "→").

Summary

- propositional logic based on atomic propositions
- syntax defines what well-formed formulas are
- semantics defines when a formula is true
- interpretations are the basis of semantics