Discrete Mathematics in Computer Science
 D1. Syntax and Semantics of Propositional Logic

Malte Helmert, Gabriele Röger

University of Basel

November 22/27, 2023

Introduction to Formal Logic

- formalizing mathematics
- What is a true statement?
- What is a valid proof?
- What can and cannot be proved?

■ basis of many tools in computer science

- design of digital circuits
- semantics of databases; query optimization
- meaning of programming languages
- verification of safety-critical hardware/software
- knowledge representation in artificial intelligence
- logic-based programming languages (e.g. Prolog)

Application: Logic Programming

Declarative approach: Describe what to accomplish, not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors so that no two adjacent regions have the same color.

This is a hard problem!

CC BY-SA 3.0 Wikimedia Commons (TUBS)

Application: Logic Programming II

```
Prolog program
color(red). color(blue). color(green). color(yellow).
differentColor(ColorA, ColorB) :-
    color(ColorA), color(ColorB),
    ColorA \= ColorB.
switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,
    JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG,
    TI, UR, VD, VS, ZG, ZH) :-
    differentColor(AG, BE), differentColor(AG, BL),
    differentColor(VD, VS), differentColor(ZH, ZG).
```


What Logic is About

General Question:

■ Given some knowledge about the world (a knowledge base)

- what can we derive from it?
- And on what basis may we argue?
\rightsquigarrow logic
Goal: "mechanical" proofs
■ formal "game with letters"
- detached from a concrete meaning

Running Example

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Propositional Logic

Propositional logic is a simple logic without numbers or objects.
Building blocks of propositional logic:

- propositions are statements that can be either true or false

■ atomic propositions cannot be split into subpropositions
■ logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage, Junktoren/logische Verknüpfungen

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- Every sentence is a proposition that consists of subpropositions (e.g., "eat ice cream or don't drink beer").

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

■ Every sentence is a proposition that consists of subpropositions (e. g., "eat ice cream or don't drink beer").
■ atomic propositions "drink beer", "eat fish", "eat ice cream"

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

■ Every sentence is a proposition that consists of subpropositions (e.g., "eat ice cream or don't drink beer").
■ atomic propositions "drink beer", "eat fish", "eat ice cream"
■ logical connectives "and", "or", negation, "if, then"

Challenges with Natural Language

Challenges with Natural Language

- "irrelevant" information

Challenges with Natural Language

If I don't drink beer, then I eat fish. Whenever I have fish and beer, I abstain from ice cream.
When I eat ice cream or don't drink beer, then I never touch fish.

- "irrelevant" information

Challenges with Natural Language

If I don't drink beer, then I eat fish. Whenever I have fish and beer, I abstain from ice cream.
When I eat ice cream or don't drink beer, then I never touch fish.

- "irrelevant" information
- different formulations for the same connective/proposition

Challenges with Natural Language

If I don't drink beer, then I eat fish. Whenever I have fish and beer, I abstain from ice cream.
When I eat ice cream or don't drink beer, then I never touch fish.

- "irrelevant" information
- different formulations for the same connective/proposition

Challenges with Natural Language

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer, then not EatlceCream.
If EatlceCream or not DrinkBeer, then not EatFish.

■ "irrelevant" information

- different formulations for the same connective/proposition

■ What are meaningful (well-defined) sequences of atomic propositions and connectives?
"if then EatlceCream not or DrinkBeer and" not meaningful
\rightarrow syntax

- What does it mean if we say that a statement is true?

Is "DrinkBeer and EatFish" true?
\rightarrow semantics
■ When does a statement logically follow from another? Does "EatFish" follow from "if DrinkBeer, then EatFish"? \rightarrow logical entailment

German: Syntax, Semantik, logische Folgerung

Syntax of Propositional Logic

Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional formulas (over A) is inductively defined as follows:

- Every atom $a \in A$ is a propositional formula over A.
- If φ is a propositional formula over A, then so is its negation $\neg \varphi$.
■ If φ and ψ are propositional formulas over A, then so is the conjunction $(\varphi \wedge \psi)$.
- If φ and ψ are propositional formulas over A, then so is the disjunction $(\varphi \vee \psi)$.

The implication $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
The biconditional $(\varphi \leftrightarrow \psi)$ is an abbrev. for $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$.
German: atomare Aussage, aussagenlogische Formel, Atom, Negation, Konjunktion, Disjunktion, Implikation, Bikonditional

Syntax: Examples

Which of the following sequences of symbols are propositional formulas over the set of all possible letter sequences? Which kinds of formula are they (atom, conjunction, ...)?
$\square(A \wedge(B \vee C))$

- $\neg(\wedge$ Rain \vee StreetWet $)$
- $\neg($ Rain \vee StreetWet $)$
- ((EatFish \wedge DrinkBeer $) \rightarrow \neg$ EatlceCream $)$
- Rain $\wedge \neg$ Rain
- $\neg(A=B)$
- $(\mathrm{A} \wedge \neg(\mathrm{B} \leftrightarrow) \mathrm{C})$
- $((A \leq B) \wedge C)$
- $(A \vee \neg(B \leftrightarrow C))$
$\square\left(\left(A_{1} \wedge A_{2}\right) \vee \neg\left(A_{3} \leftrightarrow A_{2}\right)\right)$

Semantics of Propositional Logic

Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences without any meaning.

For example, what does this mean:
$(($ EatFish \wedge DrinkBeer $) \rightarrow \neg$ EatIceCream $)$?
\triangleright We need semantics!

Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic propositions A is a function $\mathcal{I}: A \rightarrow\{0,1\}$.
A propositional formula φ (over A) holds under \mathcal{I}
(written as $\mathcal{I} \models \varphi$) according to the following definition:

$$
\begin{array}{llll}
\mathcal{I} \models a & \text { iff } & \mathcal{I}(a)=1 & (\text { for } a \in A) \\
\mathcal{I} \models \neg \varphi & \text { iff } & \text { not } \mathcal{I} \models \varphi & \\
\mathcal{I} \models(\varphi \wedge \psi) & \text { iff } & \mathcal{I} \models \varphi \text { and } \mathcal{I} \models \psi & \\
\mathcal{I} \models(\varphi \vee \psi) & \text { iff } & \mathcal{I} \models \varphi \text { or } \mathcal{I} \models \psi &
\end{array}
$$

Question: should we define semantics of $(\varphi \rightarrow \psi)$ and $(\varphi \leftrightarrow \psi)$?
German: Wahrheitsbelegung/Interpretation, φ gilt unter \mathcal{I}

Semantics of Propositional Logic: Terminology

■ For $\mathcal{I} \models \varphi$ we also say \mathcal{I} is a model of φ and that φ is true under \mathcal{I}.

- If φ does not hold under \mathcal{I}, we write this as $\mathcal{I} \not \vDash \varphi$ and say that \mathcal{I} is no model of φ and that φ is false under \mathcal{I}.
- Note: $\ell=$ is not part of the formula but part of the meta language (speaking about a formula).

German: \mathcal{I} ist ein/kein Modell von $\varphi ; \varphi$ ist wahr/falsch unter \mathcal{I}; Metasprache

Exercise

Consider the set $A=\{X, Y, Z\}$ of atomic propositions and formula $\varphi=(\mathrm{X} \wedge \neg \mathrm{Y})$.

Specify an interpretation \mathcal{I} for A with $\mathcal{I} \models \varphi$.

Semantics: Example (1)

$$
\begin{aligned}
& A=\{\text { DrinkBeer, EatFish, EatlceCream }\} \\
& \mathcal{I}=\{\text { DrinkBeer } \mapsto 1, \text { EatFish } \mapsto 0, \text { EatIceCream } \mapsto 1\} \\
& \varphi=(\neg \text { DrinkBeer } \rightarrow \text { EatFish })
\end{aligned}
$$

Do we have $\mathcal{I} \models \varphi$?

Semantics: Example (2)

Goal: prove $\mathcal{I} \models \varphi$.
Let us use the definitions we have seen:

$$
\begin{aligned}
\mathcal{I} \models \varphi \text { iff } \mathcal{I} & =(\neg \text { DrinkBeer } \rightarrow \text { EatFish }) \\
\text { iff } \mathcal{I} & =(\neg \neg \text { DrinkBeer } \vee \text { EatFish }) \\
\text { iff } \mathcal{I} & =\neg \neg \text { DrinkBeer or } \mathcal{I} \models \text { EatFish }
\end{aligned}
$$

This means that if we want to prove $\mathcal{I} \models \varphi$, it is sufficient to prove

$$
\mathcal{I} \models \neg \neg \text { DrinkBeer }
$$

or to prove

$$
\mathcal{I} \models \text { EatFish. }
$$

We attempt to prove the first of these statements.

Semantics: Example (3)

New goal: prove $\mathcal{I} \models \neg \neg$ DrinkBeer.
We again use the definitions:

$$
\begin{aligned}
\mathcal{I} & \models \neg \neg \text { DrinkBeer iff not } \mathcal{I} \models \neg \text { DrinkBeer } \\
& \text { iff not not } \mathcal{I} \models \text { DrinkBeer } \\
& \text { iff } \mathcal{I} \models \text { DrinkBeer } \\
& \text { iff } \mathcal{I}(\text { DrinkBeer })=1
\end{aligned}
$$

The last statement is true for our interpretation \mathcal{I}.
To write this up as a proof of $\mathcal{I} \models \varphi$, we can go through this line of reasoning back-to-front, starting from our assumptions and ending with the conclusion we want to show.

Semantics: Example (4)

Let $\mathcal{I}=\{$ DrinkBeer $\mapsto 1$, EatFish $\mapsto 0$, EatlceCream $\mapsto 1\}$.
Proof that $\mathcal{I} \models(\neg$ DrinkBeer \rightarrow EatFish $)$:
(1) We have $\mathcal{I} \models$ DrinkBeer (uses defn. of \models for atomic props. and fact $\mathcal{I}($ DrinkBeer $)=1)$.
(2) From (1), we get $\mathcal{I} \not \models \neg$ DrinkBeer (uses defn. of \vDash for negations).
(3) From (2), we get $\mathcal{I} \models \neg \neg$ DrinkBeer (uses defn. of \vDash for negations).
(9) From (3), we get $\mathcal{I} \models(\neg \neg$ DrinkBeer $\vee \psi)$ for all formulas ψ, in particular $\mathcal{I} \vDash(\neg \neg$ DrinkBeer \vee EatFish $)$ (uses defn. of \equiv for disjunctions).
(0) From (4), we get $\mathcal{I} \models(\neg$ DrinkBeer \rightarrow EatFish $)$ (uses defn. of " \rightarrow ").

Summary

- propositional logic based on atomic propositions
- syntax defines what well-formed formulas are
- semantics defines when a formula is true
- interpretations are the basis of semantics

