Discrete Mathematics in Computer Science
C3. Acyclicity

Malte Helmert, Gabriele Röger
University of Basel

November 13/15, 2023
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 13/15, 2023

Discrete Mathematics in Computer Science
November 13/15, 2023 - C3. Acyclicity

C3.1 Acyclic (Di-) Graphs

C3.2 Unique Paths in Trees

C3.3 Leaves and Edge Counts in Trees and Forests

C3.4 Characterizations of Trees
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 13/15, 2023

Similarly to connectedness, the presence or absence of cycles is an important practical property for (di-) graphs.

Definition (acyclic, forest, DAG)
A graph or digraph G is called acyclic if there exists no cycle in G.
An acyclic graph is also called a forest.
An acyclic digraph is also called a DAG (directed acyclic graph).
German: azyklisch/kreisfrei, Wald, DAG

Trees

Definition (tree)
A connected forest is called a tree.
German: Baum

- Tree is also a word for a recursive data structure, which consists of either a leaf or a parent node with one or more children, which are themselves trees.
- This other kind of tree is also called a rooted tree to distinguish it from a tree as a graph.
- The two meanings of "tree" are distinct but closely related.
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science \quad November 13/15, 2023 $6 / 28$

tree graph

rooted tree with root A
${ }^{\text {C3. Agclidity }}$ Tree Graphs vs. Rooted Trees - Example (2)

tree graph

rooted tree with root C
${ }^{\text {C3. Ayclicity }}$ Tree Graphs vs. Rooted Trees - Example (3)

tree graph

rooted tree with root F

From Tree Graphs to Rooted Trees

General procedure for converting tree graphs into rooted trees:

- Select any vertex v. Make v the root of the tree.
- Initially, v is the only pending vertex, and there are no processed vertices.
- As long as there are pending vertices:
- Select any pending vertex u.
- Make all neighbours v of u that are not yet processed children of u and mark them as pending.
- Change u from pending to processed.

We do not prove that this procedure always works. A proof of correctness can be given based on the results we show next.

| C3. Acyclicity |
| :--- | :--- |
| Unique Paths in Trees |
| Theorem
 Let $G=(V, E)$ be a graph.
 Then G is a tree iff there exists exactly one paths in Trees
 from any vertex $u \in V$ to any vertex $v \in V$. |
| |
| M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science |

Proof

$(\Rightarrow): G$ is a tree. Let $u, v \in V$.
We must show that there exists exactly one path from u to v.
We know that at least one path exists because G is connected.
It remains to show that there cannot be two paths from u to v. If $u=v$, there is only one path (the empty one).
(Any longer path would have to repeat a vertex.)
We assume that there exist two different paths from u to v ($u \neq v$) and derive a contradiction.

Proof (continued).
Let $\pi=\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle$ and $\pi^{\prime}=\left\langle v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\rangle$ be the two paths (with $v_{0}=v_{0}^{\prime}=u$ and $v_{n}=v_{m}^{\prime}=v$).
Let i be the smallest index with $v_{i} \neq v_{i}^{\prime}$, which must exist because the two paths are different, and neither can be a prefix of the other (else v would be repeated in the longer path).
We have $i \geq 1$ because $v_{0}=v_{0}^{\prime}$.
Let $j \geq i$ be the smallest index such that $v_{j}=v_{k}^{\prime}$ for some $k \geq i$.
Such an index must exist because $v_{n}=v_{m}^{\prime}$.
Then $\left\langle v_{i-1}, \ldots, v_{j-1}, v_{k}^{\prime}, \ldots, v_{i-1}^{\prime}\right\rangle$ is a cycle,
which contradicts the requirement that G is a tree.

C3. Acyclicity
Unique Paths In Trees - Proof (3)

Leaves in Trees - Proof

Proof.

Let $\pi=\left\langle v_{0}, \ldots, v_{n}\right\rangle$ be path in G with maximal length among all paths in G.
Because $|V| \geq 2$, we have $n \geq 1$ (else G would not be connected).
We show that vertex v_{n} has degree 1: v_{n-1} is a neighbour in G.
Assume that it were not the only neighbour of v_{n} in G,
so u is another neighbour of v_{n}. Then:

- If u is not on the path, then $\left\langle v_{0}, \ldots, v_{n}, u\right\rangle$ is a longer path: contradiction.
- If u is on the path, then $u=v_{i}$ for some $i \neq n$ and $i \neq n-1$. Then $\left\langle v_{i}, \ldots, v_{n}, v_{i}\right\rangle$ is a cycle: contradiction.
By reversing π we can show $\operatorname{deg}\left(v_{0}\right)=1$ in the same way.
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 13/15, 2023

Proof (continued).

Consider the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$
with $V^{\prime}=V \backslash\{u\}$ and $E^{\prime}=E \backslash\{e\}$.

- G^{\prime} is acyclic: every cycle in G^{\prime} would also be present in G (contradiction).
- G^{\prime} is connected: for all vertices $w \neq u$ and $w^{\prime} \neq u$, G has a path π from w to w^{\prime} because G is connected. Path π cannot include u because u has only one neighbour, so traversing u requires repeating v. Hence π is also a path in G^{\prime}.

Theorem

Let $G=(V, E)$ be a forest.
Let C be the set of connected components of G.
Then $|E|=|V|-|C|$.
This result generalizes the previous one.
Hence G^{\prime} is a tree with n vertices, and we can apply
the induction hypothesis, which gives $\left|E^{\prime}\right|=\left|V^{\prime}\right|-1$.
It follows that
$|E|=\left|E^{\prime}\right|+1=\left(\left|V^{\prime}\right|-1\right)+1=\left(\left|V^{\prime}\right|+1\right)-1=|V|-1$.

Leaves and Edge Counts in Trees and Forests
Edges in Forests - Proof
Proof.
Let $C=\left\{C_{1}, \ldots, C_{k}\right\}$.
For $1 \leq i \leq k$, let $G_{i}=\left(C_{i}, E_{i}\right)$ be G restricted to C_{i}, i.e.,
the graph whose vertices are C_{i}
and whose edges are the edges $e \in E$ with $e \subseteq C_{i}$.
We have $|V|=\sum_{i=1}^{k}\left|C_{i}\right|$ because the connected components

C3.4 Characterizations of Trees

form a partition of V.
We have $|E|=\sum_{i=1}^{k}\left|E_{i}\right|$ because every edge belongs to exactly one connected component. (Note that there cannot be edges between different connected components.)
Every graph G_{i} is a tree with at least one vertex:
it is connected because its vertices form a connected component,
and it is acyclic because G is. This implies $\left|E_{i}\right|=\left|C_{i}\right|-1$.
Putting this together, we get
$|E|=\sum_{i=1}^{k}\left|E_{i}\right|=\sum_{i=1}^{k}\left(\left|C_{i}\right|-1\right)=\sum_{i=1}^{k}\left|C_{i}\right|-k=|V|-|C|$.

Theorem
Let $G=(V, E)$ be a graph with $V \neq \emptyset$.
The following statements are equivalent:
(1) G is a tree.
(2) G is acyclic and connected.
(3) G is acyclic and $|E|=|V|-1$.
(9) G is connected and $|E|=|V|-1$.
(5) For all $u, v \in V$ there exists exactly one path from u to v.

Reminder:

(1) G is a tree.
(2) G is acyclic and connected.
(3) G is acyclic and $|E|=|V|-1$.
(4) G is connected and $|E|=|V|-1$.
(5) For all $u, v \in V$ there exists exactly one path from u to v.

Proof
We know already:

- (1) and (2) are equivalent by definition of trees.
- We have shown that (1) and (5) are equivalent.
- We have shown that (1) implies (3) and (4).

We complete the proof by showing $(3) \Rightarrow(2)$ and $(4) \Rightarrow(2)$. \ldots

[^0]
Characterizations of Trees - Proof (2)

Characterizations of Trees

Reminder:

(2) G is acyclic and connected.
(3) G is acyclic and $|E|=|V|-1$

Proof (continued).
(3) \Rightarrow (2):

Because G is acyclic, it is a forest.
From the previous result, we have $|E|=|V|-|C|$,
where C are the connected components of G
But we also know $|E|=|V|-1$. This implies $|C|=1$.
Hence G is connected and therefore a tree.

Characterizations of Trees
Characterizations of Trees - Proof (3)
Reminder:
(2) G is acyclic and connected.
(4) G is connected and $|E|=|V|-1$.

Proof (continued).
$(4) \Rightarrow(2)$:
In graphs that are not acyclic, we can remove an edge without changing the connected components: if $\left\langle v_{0}, \ldots, v_{n}, v_{0}\right\rangle(n \geq 2)$ is a cycle, remove the edge $\left\{v_{0}, v_{1}\right\}$ from the graph.
Every walk using this edge can substitute $\left\langle v_{1}, \ldots, v_{n}, v_{0}\right\rangle$
(or the reverse path) for it.
Iteratively remove edges from G in this way while preserving connectedness until this is no longer possible. The resulting graph (V, E^{\prime}) is acyclic and connected and therefore a tree.
This implies $\left|E^{\prime}\right|=|V|-1$, but we also have $|E|=|V|-1$.
This yields $|E|=\left|E^{\prime}\right|$ and hence $E^{\prime}=E$: the number of edges removable in this way must be 0 . Hence G is already acyclic.

[^0]: M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 13/15, 2023

