Discrete Mathematics in Computer Science C2. Paths and Connectivity

Malte Helmert, Gabriele Röger

University of Basel

November 6/8, 2023

Walks, Paths, Tours and Cycles

Traversing Graphs

■ When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.

- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).

Traversing Graphs

■ When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.

- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).

Examples:

- circuits: follow predecessors of signals to identify possible causes of faulty signals
- pathfinding: follow edges/arcs to find paths
- control flow graphs: follow arcs to identify dead code
- computer networks: determine if part of the network is unreachable

Definition (Walk)

A walk of length n in a graph (V, E) is a tuple $\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle \in V^{n+1}$ s.t. $\left\{v_{i}, v_{i+1}\right\} \in E$ for all $0 \leq i<n$.

A walk of length n in a digraph (N, A) is a tuple $\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle \in N^{n+1}$ s.t. $\left(v_{i}, v_{i+1}\right) \in A$ for all $0 \leq i<n$.

German: Wanderung

Notes:

- The length of the walk does not equal the length of the tuple!
- The case $n=0$ is allowed.

■ Vertices may repeat along a walk.

Walks - Example

examples of walks:

- $\langle\mathrm{B}, \mathrm{C}, \mathrm{A}\rangle$
- $\langle\mathrm{B}, \mathrm{C}, \mathrm{A}, \mathrm{B}\rangle$
- $\langle\mathrm{D}, \mathrm{F}, \mathrm{D}\rangle$
- $\langle\mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}\rangle$
- $\langle B\rangle$

examples of walks:
- $\langle 4,4,4,4\rangle$
- $\langle 3,5,3,5\rangle$
- $\langle 2,1,3\rangle$
- $\langle 4\rangle$

■ $\langle 4,4\rangle$

Walks - Terminology

Definition

Let $\pi=\left\langle v_{0}, \ldots, v_{n}\right\rangle$ be a walk in a graph or digraph G.

- We say π is a walk from v_{0} to v_{n}.
- A walk with $v_{i} \neq v_{j}$ for all $0 \leq i<j \leq n$ is called a path.
- A walk of length 0 is called an empty walk/path.
- A walk with $v_{0}=v_{n}$ is called a tour.
- A tour with $n \geq 1$ (digraphs) or $n \geq 3$ (graphs) and $v_{i} \neq v_{j}$ for all $1 \leq i<j \leq n$ is called a cycle.

German: von/nach, Pfad, leer, Tour, Zyklus
Note: Terminology is not very consistent in the literature.

Walks, Paths, Tours, Cycles - Example

Which walks are paths, tours, cycles?

- $\langle\mathrm{B}, \mathrm{C}, \mathrm{A}\rangle$
- $\langle\mathrm{B}, \mathrm{C}, \mathrm{A}, \mathrm{B}\rangle$
$-\langle D, F, D\rangle$
- $\langle\mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}\rangle$
- $\langle B\rangle$
- $\langle 4,4,4,4\rangle$
- $\langle 3,5,3,5\rangle$
- $\langle 2,1,3\rangle$
- $\langle 4\rangle$
- $\langle 4,4\rangle$

Reachability

Reachability

Definition (successor and reachability)

Let G be a graph (digraph).
The successor relation S_{G} and reachability relation R_{G} are relations over the vertices/nodes of G defined as follows:
$\square(u, v) \in S_{G}$ iff $\{u, v\}$ is an edge $((u, v)$ is an arc) of G
$\square(u, v) \in \mathrm{R}_{G}$ iff there exists a walk from u to v
If $(u, v) \in \mathrm{R}_{G}$, we say that v is reachable from u.
German: Nachfolger-/Erreichbarkeitsrelation, erreichbar

Reachability as Closure

Recall the n-fold composition R^{n} of a relation R over set S :

- $R^{1}=R$

■ $R^{n+1}=R \circ R^{n}$
also: $R^{0}=\{(x, x) \mid x \in S\}$ (0-fold composition is identity relation)

Theorem

Let G be a graph or digraph. Then:
$(u, v) \in S_{G}^{n}$ iff there exists a walk of length n from u to v.

Corollary

Let G be a graph or digraph. Then $\mathrm{R}_{G}=\bigcup_{n=0}^{\infty} \mathrm{S}_{G}^{n}$.
In other words, the reachability relation is the reflexive and transitive closure of the successor relation.

Reachability as Closure - Proof (1)

Proof.

To simplify notation, we assume $G=(N, A)$ is a digraph. Graphs are analogous.
Proof by induction over n.

Reachability as Closure - Proof (1)

Proof.

To simplify notation, we assume $G=(N, A)$ is a digraph.
Graphs are analogous.
Proof by induction over n.
induction base $(n=0)$:
By definition of the 0 -fold composition, we have $(u, v) \in \mathrm{S}_{G}^{0}$ iff $u=v$, and a walk of length 0 from u to v exists iff $u=v$. Hence, the two conditions are equivalent.

Reachability as Closure - Proof (2)

Proof (continued).

induction step $(n \rightarrow n+1)$:

Reachability as Closure - Proof (2)

Proof (continued).

induction step $(n \rightarrow n+1)$:
(\Rightarrow) : Let $(u, v) \in \mathrm{S}_{G}^{n+1}$.
By definition of R^{n+1}, we get $(u, v) \in S_{G} \circ S_{G}^{n}$.
By definition of o there exists w with $(u, w) \in \mathrm{S}_{G}^{n}$ and $(w, v) \in \mathrm{S}_{G}$.
From the induction hypothesis, there exists a length- n walk $\left\langle x_{0}, \ldots, x_{n}\right\rangle$ with $x_{0}=u$ and $x_{n}=w$.
Then $\left\langle x_{0}, \ldots, x_{n}, v\right\rangle$ is a length- $(n+1)$ walk from u to v.

Reachability as Closure - Proof (2)

Proof (continued).

induction step $(n \rightarrow n+1)$:
(\Rightarrow) : Let $(u, v) \in \mathrm{S}_{G}^{n+1}$.
By definition of R^{n+1}, we get $(u, v) \in S_{G} \circ S_{G}^{n}$.
By definition of o there exists w with $(u, w) \in \mathrm{S}_{G}^{n}$ and $(w, v) \in \mathrm{S}_{G}$.
From the induction hypothesis, there exists a length- n walk
$\left\langle x_{0}, \ldots, x_{n}\right\rangle$ with $x_{0}=u$ and $x_{n}=w$.
Then $\left\langle x_{0}, \ldots, x_{n}, v\right\rangle$ is a length- $(n+1)$ walk from u to v.
(\Leftarrow) : Let $\left\langle x_{0}, \ldots, x_{n+1}\right\rangle$ be a length- $(n+1)$ walk from u to v
$\left(x_{0}=u, x_{n+1}=v\right)$. Then $\left(x_{n}, x_{n+1}\right)=\left(x_{n}, v\right) \in A$.
Also, $\left\langle x_{0}, \ldots, x_{n}\right\rangle$ is a length- n walk from x_{0} to x_{n}.
From the IH we get $\left(u, x_{n}\right)=\left(x_{0}, x_{n}\right) \in S_{G}^{n}$.
Together with $\left(x_{n}, v\right) \in \mathrm{S}_{G}$ this shows $(u, v) \in \mathrm{S}_{G} \circ \mathrm{~S}_{G}^{n}=\mathrm{S}_{G}^{n+1}$.

Connected Components

- In this section, we study reachability of graphs in more depth.
- We show that it makes no difference whether we define reachability in terms of walks or paths, and that reachability in graphs is an equivalence relation.
- This leads to the connected components of a graph.
- In digraphs, reachability is not always an equivalence relation.
- However, we can define two variants of reachability that give rise to weakly or strongly connected components.

Walks vs. Paths

Theorem
Let G be a graph or digraph.
There exists a path from u to v iff there exists a walk from u to v.
In other words, there is a path from u to v iff v is reachable from u.

Walks vs. Paths

Theorem

Let G be a graph or digraph.
There exists a path from u to v iff there exists a walk from u to v.
In other words, there is a path from u to v iff v is reachable from u.

Proof.

(\Rightarrow) : obvious because paths are special cases of walks
(\Leftarrow) : Proof by contradiction. Assume there exist u, v such that there exists a walk from u to v, but no path. Let $\pi=\left\langle w_{0}, \ldots, w_{n}\right\rangle$ be such a counterexample walk of minimal length.
Because π is not a path, some vertex/node must repeat.
Select i and j with $i<j$ and $w_{i}=w_{j}$.
Then $\pi^{\prime}=\left\langle w_{0}, \ldots, w_{i}, w_{j+1}, \ldots, w_{n}\right\rangle$ also is a walk from u to v. If π^{\prime} is a path, we have a contradiction.
If not, it is a shorter counterexample: also a contradiction.

Reachability in Graphs is an Equivalence Relation

Theorem

For every graph G, the reachability relation R_{G} is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Proof.

We already know reachability is reflexive and transitive.
To prove symmetry:

$$
\begin{aligned}
& (u, v) \in \mathrm{R}_{G} \\
\Rightarrow & \text { there is a walk }\left\langle w_{0}, \ldots, w_{n}\right\rangle \text { from } u \text { to } v \\
\Rightarrow & \left\langle w_{n}, \ldots, w_{0}\right\rangle \text { is a walk from } v \text { to } u \\
\Rightarrow & (v, u) \in \mathrm{R}_{G}
\end{aligned}
$$

Connected Components

Definition (connected components, connected)

In a graph G, the equivalence classes
of the reachability relation of G are called the connected components of G.
A graph is called connected if it has at most 1 connected component.

German: Zusammenhangskomponenten, zusammenhängend
Remark: The graph (\emptyset, \emptyset) has 0 connected components.
It is the only such graph.

Weakly Connected Components

Definition (weakly connected components, weakly connected)
 In a digraph G, the equivalence classes
 of the reachability relation of the induced graph of G are called the weakly connected components of G.
 A digraph is called weakly connected if it has at most 1 weakly connected component.

German: schwache Zshk., schwach zusammenhängend
Remark: The digraph (\emptyset, \emptyset) has 0 weakly connected components. It is the only such digraph.

(Weakly) Connected Components - Example

(Weakly) Connected Components - Example

connected components:

- $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}\}$

■ $\{1,2,3,4,5\}$

- $\{\mathrm{D}, \mathrm{F}\}$
- $\{\mathrm{G}\}$

Mutual Reachability

Definition (mutually reachable)
Let G be a graph or digraph.
Vertices/nodes u and v in G are called mutually reachable if v is reachable from u and u is reachable from v.
We write M_{G} for the mutual reachability relation of G
German: gegenseitig erreichbar
Note: In graphs, $M_{G}=R_{G}$. (Why?)

Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation M_{G} is an equivalence relation.

Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation M_{G} is an equivalence relation.

Proof.

Note that $(u, v) \in \mathrm{M}_{G}$ iff $(u, v) \in \mathrm{R}_{G}$ and $(v, u) \in \mathrm{R}_{G}$.
■ reflexivity: for all v, we have $(v, v) \in \mathrm{M}_{G}$ because $(v, v) \in \mathrm{R}_{G}$

Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation M_{G} is an equivalence relation.

Proof.

Note that $(u, v) \in \mathrm{M}_{G}$ iff $(u, v) \in \mathrm{R}_{G}$ and $(v, u) \in \mathrm{R}_{G}$.

- reflexivity: for all v, we have $(v, v) \in \mathrm{M}_{G}$ because $(v, v) \in \mathrm{R}_{G}$

■ symmetry: Let $(u, v) \in M_{G}$. Then $(v, u) \in M_{G}$ is obvious.

Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation M_{G} is an equivalence relation.

Proof.

Note that $(u, v) \in \mathrm{M}_{G}$ iff $(u, v) \in \mathrm{R}_{G}$ and $(v, u) \in \mathrm{R}_{G}$.

- reflexivity: for all v, we have $(v, v) \in \mathrm{M}_{G}$ because $(v, v) \in \mathrm{R}_{G}$
- symmetry: Let $(u, v) \in M_{G}$. Then $(v, u) \in M_{G}$ is obvious.
- transitivity: Let $(u, v) \in \mathrm{M}_{G}$ and $(v, w) \in \mathrm{M}_{G}$. Then: $(u, v) \in \mathrm{R}_{G},(v, u) \in \mathrm{R}_{G},(v, w) \in \mathrm{R}_{G},(w, v) \in \mathrm{R}_{G}$. Transitivity of R_{G} yields $(u, w) \in \mathrm{R}_{G}$ and $(w, u) \in \mathrm{R}_{G}$, and hence $(u, w) \in \mathrm{M}_{G}$.

Strongly Connected Components

Definition (strongly connected components, strongly connected)
 In a digraph G, the equivalence classes
 of the mutual reachability relation are called the strongly connected components of G.
 A digraph is called strongly connected if it has at most 1 strongly connected component.

German: starke Zshk., stark zusammenhängend
Remark: The digraph (\emptyset, \emptyset) has 0 strongly connected components. It is the only such digraph.

Strongly Connected Components - Example

Strongly Connected Components - Example

strongly connected components:

- $\{1,2\}$
- $\{3,4,5\}$

