Discrete Mathematics in Computer Science
C2. Paths and Connectivity

Malte Helmert, Gabriele Röger
University of Basel

November 6/8, 2023
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Discrete Mathematics in Computer Science November 6/8, 2023 - C2. Paths and Connectivity

C2.1 Walks, Paths, Tours and Cycles

C2.2 Reachability

C2.3 Connected Components
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 6/8, $2023 \quad 2 / 24$

C2. Paths and Connectivity

Walks, Paths, Tours and Cycles
Traversing Graphs

- When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.
- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).
Examples:
- circuits: follow predecessors of signals to identify possible causes of faulty signals
- pathfinding: follow edges/arcs to find paths
- control flow graphs: follow arcs to identify dead code
- computer networks: determine if part of the network is unreachable

Walks

Definition (Walk)

A walk of length n in a graph (V, E) is a tuple
$\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle \in V^{n+1}$ s.t. $\left\{v_{i}, v_{i+1}\right\} \in E$ for all $0 \leq i<n$.
A walk of length n in a digraph (N, A) is a tuple
$\left\langle v_{0}, v_{1}, \ldots, v_{n}\right\rangle \in N^{n+1}$ s.t. $\left(v_{i}, v_{i+1}\right) \in A$ for all $0 \leq i<n$.
German: Wanderung

Notes:

- The length of the walk does not equal the length of the tuple!
- The case $n=0$ is allowed.
- Vertices may repeat along a walk.

Walks - Example

examples of walks:

- $\langle\mathrm{B}, \mathrm{C}, \mathrm{A}\rangle$ examples of walks:
- $\langle B, C, A, B\rangle$
- $\langle 4,4,4,4\rangle$
- $\langle\mathrm{D}, \mathrm{F}, \mathrm{D}\rangle$
- $\langle 3,5,3,5\rangle$
- $\langle\mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}\rangle$
- $\langle 2,1,3\rangle$
- $\langle\mathrm{B}\rangle$
- $\langle 4\rangle$
- $\langle 4,4\rangle$

C2.2 Reachability

Definition (successor and reachability)

Let G be a graph (digraph).
The successor relation S_{G} and reachability relation R_{G} are relations over the vertices/nodes of G defined as follows:

- $(u, v) \in \mathrm{S}_{G}$ iff $\{u, v\}$ is an edge $((u, v)$ is an arc) of G
- $(u, v) \in \mathrm{R}_{G}$ iff there exists a walk from u to v

If $(u, v) \in \mathrm{R}_{G}$, we say that v is reachable from u.
German: Nachfolger-/Erreichbarkeitsrelation, erreichbar

Reachability

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 6/8, 2023

Recall the n-fold composition R^{n} of a relation R over set S :

- $R^{1}=R$
$\rightarrow R^{n+1}=R \circ R^{n}$
also: $R^{0}=\{(x, x) \mid x \in S\}$ (0-fold composition is identity relation)

Theorem
Let G be a graph or digraph. Then:
$(u, v) \in S_{G}^{n}$ iff there exists a walk of length n from u to v.
Corollary
Let G be a graph or digraph. Then $\mathrm{R}_{G}=\bigcup_{n=0}^{\infty} \mathrm{S}_{G}^{n}$.
In other words, the reachability relation is the reflexive and transitive closure of the successor relation.

```
Reachability as Closure - Proof (1)

\section*{Proof.}

To simplify notation, we assume \(G=(N, A)\) is a digraph
Graphs are analogous.
Proof by induction over \(n\).
induction base ( \(n=0\) ):
By definition of the 0 -fold composition, we have \((u, v) \in \mathrm{S}_{G}^{0}\) iff \(u=v\), and a walk of length 0 from \(u\) to \(v\) exists iff \(u=v\).
Hence, the two conditions are equivalent.

\section*{C2.3 Connected Components}

\section*{Proof (continued).}
induction step ( \(n \rightarrow n+1\) ):
\((\Rightarrow)\) : Let \((u, v) \in \mathrm{S}_{G}^{n+1}\).
By definition of \(R^{n+1}\), we get \((u, v) \in S_{G} \circ S_{G}^{n}\).
By definition of o there exists \(w\) with \((u, w) \in S_{G}^{n}\) and \((w, v) \in S_{G}\).
From the induction hypothesis, there exists a length- \(n\) walk
\(\left\langle x_{0}, \ldots, x_{n}\right\rangle\) with \(x_{0}=u\) and \(x_{n}=w\).
Then \(\left\langle x_{0}, \ldots, x_{n}, v\right\rangle\) is a length- \((n+1)\) walk from \(u\) to \(v\).
\((\Leftarrow)\) : Let \(\left\langle x_{0}, \ldots, x_{n+1}\right\rangle\) be a length- \((n+1)\) walk from \(u\) to \(v\) \(\left(x_{0}=u, x_{n+1}=v\right)\). Then \(\left(x_{n}, x_{n+1}\right)=\left(x_{n}, v\right) \in A\).
Also, \(\left\langle x_{0}, \ldots, x_{n}\right\rangle\) is a length \(n\) walk from \(x_{0}\) to \(x_{n}\).
From the IH we get \(\left(u, x_{n}\right)=\left(x_{0}, x_{n}\right) \in \mathrm{S}_{G}^{n}\).
Together with \(\left(x_{n}, v\right) \in \mathrm{S}_{G}\) this shows \((u, v) \in \mathrm{S}_{G} \circ \mathrm{~S}_{G}^{n}=\mathrm{S}_{G}^{n+1}\).
C2. Paths and Connectivity Connected Components

\section*{Overview}

\section*{Walks vs. Paths}

\section*{Theorem}

Let \(G\) be a graph or digraph.
There exists a path from \(u\) to \(v\) iff there exists a walk from \(u\) to \(v\).
In other words, there is a path from \(u\) to \(v\) iff \(v\) is reachable from \(u\).
Proof.
\((\Rightarrow)\) : obvious because paths are special cases of walks
\((\Leftarrow)\) : Proof by contradiction. Assume there exist \(u, v\) such that there exists a walk from \(u\) to \(v\), but no path. Let \(\pi=\left\langle w_{0}, \ldots, w_{n}\right\rangle\) be such a counterexample walk of minimal length.
Because \(\pi\) is not a path, some vertex/node must repeat.
Select \(i\) and \(j\) with \(i<j\) and \(w_{i}=w_{j}\).
Then \(\pi^{\prime}=\left\langle w_{0}, \ldots, w_{i}, w_{j+1}, \ldots, w_{n}\right\rangle\) also is a walk from \(u\) to \(v\). If \(\pi^{\prime}\) is a path, we have a contradiction.
If not, it is a shorter counterexample: also a contradiction.

\section*{Reachability in Graphs is an Equivalence Relation}

Connected Components

\section*{Theorem}

For every graph \(G\), the reachability relation \(\mathrm{R}_{G}\) is an equivalence relation.

Definition (connected components, connected)
In a graph \(G\), the equivalence classes of the reachability relation of \(G\)
are called the connected components of \(G\).
A graph is called connected if it has at most 1 connected component.

German: Zusammenhangskomponenten, zusammenhängend
Remark: The graph \((\emptyset, \emptyset)\) has 0 connected components. It is the only such graph
\[
\begin{aligned}
& (u, v) \in \mathrm{R}_{G} \\
\Rightarrow & \text { there is a walk }\left\langle w_{0}, \ldots, w_{n}\right\rangle \text { from } u \text { to } v \\
\Rightarrow & \left\langle w_{n}, \ldots, w_{0}\right\rangle \text { is a walk from } v \text { to } u \\
\Rightarrow & (v, u) \in \mathrm{R}_{G}
\end{aligned}
\]

Definition (weakly connected components, weakly connected)
In a digraph \(G\), the equivalence classes
of the reachability relation of the induced graph of \(G\) are called the weakly connected components of \(G\).
A digraph is called weakly connected if it has at most 1 weakly connected component.

German: schwache Zshk., schwach zusammenhängend
Remark: The digraph \((\emptyset, \emptyset)\) has 0 weakly connected components.
It is the only such digraph.

\section*{Theorem}

For every digraph \(G\), the mutual reachability relation \(M_{G}\) is an equivalence relation.

Proof.
Note that \((u, v) \in \mathrm{M}_{G}\) iff \((u, v) \in \mathrm{R}_{G}\) and \((v, u) \in \mathrm{R}_{G}\).
- reflexivity: for all \(v\), we have \((v, v) \in \mathrm{M}_{G}\) because \((v, v) \in \mathrm{R}_{G}\)
- symmetry: Let \((u, v) \in \mathrm{M}_{G}\). Then \((v, u) \in \mathrm{M}_{G}\) is obvious.
- transitivity: Let \((u, v) \in \mathrm{M}_{G}\) and \((v, w) \in \mathrm{M}_{G}\).

Then: \((u, v) \in \mathrm{R}_{G},(v, u) \in \mathrm{R}_{G},(v, w) \in \mathrm{R}_{G},(w, v) \in \mathrm{R}_{G}\).
Transitivity of \(\mathrm{R}_{G}\) yields \((u, w) \in \mathrm{R}_{G}\) and \((w, u) \in \mathrm{R}_{G}\),
and hence \((u, w) \in \mathrm{M}_{G}\).
M. Helmert. G. Röger (University of Basel) Discrete Mathematics in Computer Science November 6/8, 2023 November 6/8, 2023 22/24
c2. Paths and Connectivity
Strongly Connected Components
Strongly Connected Components - Example Connectivity Components
strongly connected components:
\(\{1,2\}\)
\(\{3,4,5\}\)```

