Discrete Mathematics in Computer Science C2. Paths and Connectivity

Malte Helmert, Gabriele Röger

University of Basel

November 6/8, 2023

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Discrete Mathematics in Computer Science November 6/8, 2023 — C2. Paths and Connectivity

C2.1 Walks, Paths, Tours and Cycles

C2.2 Reachability

C2.3 Connected Components

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

C2.1 Walks, Paths, Tours and Cycles

Traversing Graphs

- When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.
- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).

Examples:

- circuits: follow predecessors of signals to identify possible causes of faulty signals
- pathfinding: follow edges/arcs to find paths
- control flow graphs: follow arcs to identify dead code
- computer networks: determine if part of the network is unreachable

Walks

Definition (Walk) A walk of length *n* in a graph (V, E) is a tuple $\langle v_0, v_1, \ldots, v_n \rangle \in V^{n+1}$ s.t. $\{v_i, v_{i+1}\} \in E$ for all $0 \le i < n$. A walk of length *n* in a digraph (N, A) is a tuple $\langle v_0, v_1, \ldots, v_n \rangle \in N^{n+1}$ s.t. $(v_i, v_{i+1}) \in A$ for all $0 \le i < n$.

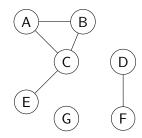
German: Wanderung

Notes:

- The length of the walk does not equal the length of the tuple!
- The case n = 0 is allowed.
- Vertices may repeat along a walk.

2

Walks – Example



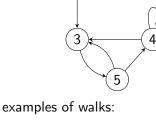
examples of walks:

- $\blacktriangleright \ \langle \mathsf{B},\mathsf{C},\mathsf{A}\rangle$
- $\blacktriangleright \langle \mathsf{B},\mathsf{C},\mathsf{A},\mathsf{B}\rangle$
- $\blacktriangleright \langle \mathsf{D},\mathsf{F},\mathsf{D}\rangle$

(B)

$$\blacktriangleright \langle \mathsf{B},\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{E} \rangle$$

(4)
(4, 4)



Walks – Terminology

Definition

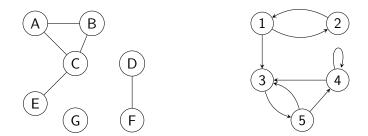
- Let $\pi = \langle v_0, \ldots, v_n \rangle$ be a walk in a graph or digraph *G*.
 - We say π is a walk from v_0 to v_n .
 - ▶ A walk with $v_i \neq v_j$ for all $0 \leq i < j \leq n$ is called a path.
 - A walk of length 0 is called an empty walk/path.
 - A walk with $v_0 = v_n$ is called a tour.
 - A tour with n ≥ 1 (digraphs) or n ≥ 3 (graphs) and v_i ≠ v_j for all 1 ≤ i < j ≤ n is called a cycle.</p>

German: von/nach, Pfad, leer, Tour, Zyklus

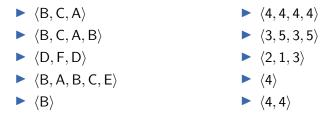
Note: Terminology is not very consistent in the literature.

C2. Paths and Connectivity

Walks, Paths, Tours, Cycles - Example



Which walks are paths, tours, cycles?



C2.2 Reachability

Reachability

Definition (successor and reachability) Let G be a graph (digraph). The successor relation S_G and reachability relation R_G are relations over the vertices/nodes of G defined as follows: $(u, v) \in S_G$ iff $\{u, v\}$ is an edge ((u, v) is an arc) of G $(u, v) \in R_G$ iff there exists a walk from u to v If $(u, v) \in R_G$, we say that v is reachable from u.

German: Nachfolger-/Erreichbarkeitsrelation, erreichbar

Reachability as Closure

Recall the *n*-fold composition R^n of a relation R over set S:

$$\blacktriangleright R^1 = R$$

$$\blacktriangleright R^{n+1} = R \circ R^n$$

also: $R^0 = \{(x, x) \mid x \in S\}$ (0-fold composition is identity relation)

Theorem Let G be a graph or digraph. Then: $(u, v) \in S_G^n$ iff there exists a walk of length n from u to v.

Corollary

Let G be a graph or digraph. Then
$$R_G = \bigcup_{n=0}^{\infty} S_G^n$$
.

In other words, the reachability relation is the reflexive and transitive closure of the successor relation.

. . .

Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N, A) is a digraph.

Graphs are analogous.

Proof by induction over *n*.

induction base (n = 0):

By definition of the 0-fold composition, we have $(u, v) \in S_G^0$ iff u = v, and a walk of length 0 from u to v exists iff u = v. Hence, the two conditions are equivalent.

Reachability as Closure – Proof (2)

```
Proof (continued).
induction step (n \rightarrow n+1):
(\Rightarrow): Let (u, v) \in S_{C}^{n+1}.
By definition of R^{n+\bar{1}}, we get (u, v) \in S_G \circ S_C^n.
By definition of \circ there exists w with (u, w) \in S_G^n and (w, v) \in S_G.
From the induction hypothesis, there exists a length-n walk
\langle x_0, \ldots, x_n \rangle with x_0 = u and x_n = w.
Then \langle x_0, \ldots, x_n, v \rangle is a length-(n+1) walk from u to v.
(\Leftarrow): Let \langle x_0, \ldots, x_{n+1} \rangle be a length-(n+1) walk from u to v
(x_0 = u, x_{n+1} = v). Then (x_n, x_{n+1}) = (x_n, v) \in A.
Also, \langle x_0, \ldots, x_n \rangle is a length-n walk from x_0 to x_n.
From the IH we get (u, x_n) = (x_0, x_n) \in S_C^n.
Together with (x_n, v) \in S_G this shows (u, v) \in S_G \circ S_G^n = S_C^{n+1}.
```

C2.3 Connected Components

Overview

- ▶ In this section, we study reachability of graphs in more depth.
- We show that it makes no difference whether we define reachability in terms of walks or paths, and that reachability in graphs is an equivalence relation.
- This leads to the connected components of a graph.
- In digraphs, reachability is not always an equivalence relation.
- However, we can define two variants of reachability that give rise to weakly or strongly connected components.

Walks vs. Paths

Theorem

Let G be a graph or digraph. There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Proof.

 (\Rightarrow) : obvious because paths are special cases of walks

(\Leftarrow): Proof by contradiction. Assume there exist u, v such that there exists a walk from u to v, but no path. Let $\pi = \langle w_0, \ldots, w_n \rangle$ be such a counterexample walk of minimal length. Because π is not a path, some vertex/node must repeat. Select i and j with i < j and $w_i = w_j$. Then $\pi' = \langle w_0, \ldots, w_i, w_{j+1}, \ldots, w_n \rangle$ also is a walk from u to v. If π' is a path, we have a contradiction. If not, it is a shorter counterexample: also a contradiction.

Reachability in Graphs is an Equivalence Relation

Theorem

For every graph G, the reachability relation R_G is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Proof.

We already know reachability is reflexive and transitive. To prove symmetry:

$$(u, v) \in \mathsf{R}_{G}$$

 \Rightarrow there is a walk $\langle w_0, \dots, w_n \rangle$ from u to v
 $\Rightarrow \langle w_n, \dots, w_0 \rangle$ is a walk from v to u
 $\Rightarrow (v, u) \in \mathsf{R}_{G}$

Connected Components

Definition (connected components, connected)

In a graph G, the equivalence classes of the reachability relation of Gare called the connected components of G. A graph is called connected if it has at mos

A graph is called connected if it has at most 1 connected component.

German: Zusammenhangskomponenten, zusammenhängend

Remark: The graph (\emptyset, \emptyset) has 0 connected components. It is the only such graph.

C2. Paths and Connectivity

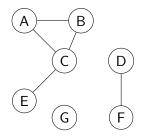
Weakly Connected Components

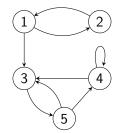
Definition (weakly connected components, weakly connected) In a digraph G, the equivalence classes of the reachability relation of the induced graph of Gare called the weakly connected components of G. A digraph is called weakly connected if it has at most 1 weakly connected component.

German: schwache Zshk., schwach zusammenhängend

Remark: The digraph (\emptyset, \emptyset) has 0 weakly connected components. It is the only such digraph.

(Weakly) Connected Components – Example





connected components:

weakly connected components: [1, 2, 2, 4, 5]

► {1, 2, 3, 4, 5}

Mutual Reachability

Definition (mutually reachable)

Let G be a graph or digraph. Vertices/nodes u and v in G are called mutually reachable if v is reachable from u and u is reachable from v. We write M_G for the mutual reachability relation of G

German: gegenseitig erreichbar

Note: In graphs, $M_G = R_G$. (Why?)

Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Proof.

Note that $(u, v) \in M_G$ iff $(u, v) \in R_G$ and $(v, u) \in R_G$.

- ▶ reflexivity: for all v, we have $(v, v) \in M_G$ because $(v, v) \in R_G$
- ▶ symmetry: Let $(u, v) \in M_G$. Then $(v, u) \in M_G$ is obvious.
- ▶ transitivity: Let $(u, v) \in M_G$ and $(v, w) \in M_G$. Then: $(u, v) \in R_G$, $(v, u) \in R_G$, $(v, w) \in R_G$, $(w, v) \in R_G$. Transitivity of R_G yields $(u, w) \in R_G$ and $(w, u) \in R_G$, and hence $(u, w) \in M_G$.

C2. Paths and Connectivity

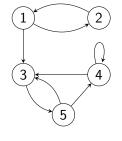
Strongly Connected Components

Definition (strongly connected components, strongly connected) In a digraph *G*, the equivalence classes of the mutual reachability relation are called the strongly connected components of *G*. A digraph is called strongly connected if it has at most 1 strongly connected component.

German: starke Zshk., stark zusammenhängend

Remark: The digraph (\emptyset, \emptyset) has 0 strongly connected components. It is the only such digraph.

Strongly Connected Components – Example



strongly connected components: