Discrete Mathematics in Computer Science

 B9. Divisibility \& Modular ArithmeticMalte Helmert, Gabriele Röger
University of Basel

November 1, 2023

Divisibility

Divisibility

- Can we equally share n muffins among m persons without cutting a muffin?

Divisibility

- Can we equally share n muffins among m persons without cutting a muffin?

■ If yes then n is a multiple of m and m divides n.

Divisibility

- Can we equally share n muffins among m persons without cutting a muffin?
- If yes then n is a multiple of m and m divides n.

■ We consider a generalization of this concept to the integers.

Divisibility

Definition (divisor, multiple)

Let $m, n \in \mathbb{Z}$. If there exists a $k \in \mathbb{Z}$ such that $m k=n$, we say that m divides n, m is a divisor of n or n is a multiple of m and write this as $m \mid n$.

Divisibility

Definition (divisor, multiple)

Let $m, n \in \mathbb{Z}$. If there exists a $k \in \mathbb{Z}$ such that $m k=n$, we say that m divides n, m is a divisor of n or n is a multiple of m and write this as $m \mid n$.

Which of the following are true?

- $2 \mid 4$

■ $-2 \mid 4$

- $2 \mid-4$
- 4 | 2
- $3 \mid 4$

Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If $d \mid a$ and $d \mid b$ then for all integers x and y it holds that $d \mid x a+y b$.

Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If $d \mid a$ and $d \mid b$ then for all integers x and y it holds that $d \mid x a+y b$.

Proof.

If $d \mid a$ and $d \mid b$ then there are $k, k^{\prime} \in \mathbb{Z}$
such that $k d=a$ and $k^{\prime} d=b$.
It holds for all $x, y \in \mathbb{Z}$ that $x a+y b=x k d+y k^{\prime} d=\left(x k+y k^{\prime}\right) d$. As x, y, k, k^{\prime} are integers, $x k+y k^{\prime}$ is integer, thus $d \mid x a+y b$.

Divisibility and Linear Combinations

Theorem (Linear combinations)

Let a, b and d be integers. If $d \mid a$ and $d \mid b$ then for all integers x and y it holds that $d \mid x a+y b$.

Proof.

If $d \mid a$ and $d \mid b$ then there are $k, k^{\prime} \in \mathbb{Z}$
such that $k d=a$ and $k^{\prime} d=b$.
It holds for all $x, y \in \mathbb{Z}$ that $x a+y b=x k d+y k^{\prime} d=\left(x k+y k^{\prime}\right) d$. As x, y, k, k^{\prime} are integers, $x k+y k^{\prime}$ is integer, thus $d \mid x a+y b$.

Some consequences:
$\square d \mid a-b$ iff $d \mid b-a$
■ If $d \mid a$ and $d \mid b$ then $d \mid a+b$ and $d \mid a-b$.

- If $d \mid a$ then $d \mid-8 a$.

Multiplication and Exponentiation

Theorem
 Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_{>0}$. If $a \mid b$ then $a c \mid b c$ and $a^{n} \mid b^{n}$.

Multiplication and Exponentiation

Theorem
 Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_{>0}$.
 If $a \mid b$ then $a c \mid b c$ and $a^{n} \mid b^{n}$.

Proof.

If $a \mid b$ there is a $k \in \mathbb{Z}$ such that $a k=b$.

Multiplication and Exponentiation

Theorem

Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_{>0}$.
If $a \mid b$ then $a c \mid b c$ and $a^{n} \mid b^{n}$.

Proof.

If $a \mid b$ there is a $k \in \mathbb{Z}$ such that $a k=b$.
Multiplying both sides with c, we get $c a k=c b$ and thus $c a \mid c b$.

Multiplication and Exponentiation

Theorem

Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}_{>0}$. If $a \mid b$ then $a c \mid b c$ and $a^{n} \mid b^{n}$.

Proof.

If $a \mid b$ there is a $k \in \mathbb{Z}$ such that $a k=b$.
Multiplying both sides with c, we get $c a k=c b$ and thus $c a \mid c b$.
From $a k=b$, we also get $b^{n}=(a k)^{n}=a^{n} k^{n}$, so $a^{n} \mid b^{n}$.

Partial Order

If we consider only the natural numbers, divisibility is a partial order:

Theorem

Divisibility \mid over \mathbb{N}_{0} is a partial order.

Proof.

Partial Order

If we consider only the natural numbers, divisibility is a partial order:

Theorem

Divisibility \mid over \mathbb{N}_{0} is a partial order.

Proof.

- reflexivity: For all $m \in \mathbb{N}_{0}$ it holds that $m \cdot 1=m$, so $m \mid m$.

Partial Order

If we consider only the natural numbers, divisibility is a partial order:

Theorem

Divisibility | over \mathbb{N}_{0} is a partial order.

Proof.

- reflexivity: For all $m \in \mathbb{N}_{0}$ it holds that $m \cdot 1=m$, so $m \mid m$.
- transitivity: If $m \mid n$ and $n \mid o$ there are $k, k^{\prime} \in \mathbb{Z}$
such that $m k=n$ and $n k^{\prime}=0$.
With $k^{\prime \prime}=k k^{\prime}$ it holds then that $o=n k^{\prime}=m k k^{\prime}=m k^{\prime \prime}$, and consequently $m \mid o$.

Partial Order

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then $m=n$.

Partial Order

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then $m=n$.
If $m=n=0$, there is nothing to show.

Partial Order

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then $m=n$.
If $m=n=0$, there is nothing to show.
Otherwise, at least one of m and n is positive.

Partial Order

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then $m=n$.
If $m=n=0$, there is nothing to show.
Otherwise, at least one of m and n is positive.
Let this w.l.o.g. (without loss of generality) be m.

Partial Order

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then $m=n$.
If $m=n=0$, there is nothing to show.
Otherwise, at least one of m and n is positive.
Let this w.l.o.g. (without loss of generality) be m.
If $m \mid n$ and $n \mid m$ then there are $k, k^{\prime} \in \mathbb{Z}$
such that $m k=n$ and $n k^{\prime}=m$.

Partial Order

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then $m=n$.
If $m=n=0$, there is nothing to show.
Otherwise, at least one of m and n is positive.
Let this w.l.o.g. (without loss of generality) be m.
If $m \mid n$ and $n \mid m$ then there are $k, k^{\prime} \in \mathbb{Z}$
such that $m k=n$ and $n k^{\prime}=m$.
Combining these, we get $m=n k^{\prime}=m k k^{\prime}$, which implies (with $m \neq 0$) that $k k^{\prime}=1$.

Partial Order

Proof (continued).

■ antisymmetry: We show that if $m \mid n$ and $n \mid m$ then $m=n$.
If $m=n=0$, there is nothing to show.
Otherwise, at least one of m and n is positive.
Let this w.l.o.g. (without loss of generality) be m.
If $m \mid n$ and $n \mid m$ then there are $k, k^{\prime} \in \mathbb{Z}$
such that $m k=n$ and $n k^{\prime}=m$.
Combining these, we get $m=n k^{\prime}=m k k^{\prime}$, which implies (with $m \neq 0$) that $k k^{\prime}=1$.
Since k and k^{\prime} are integers, this implies $k=k^{\prime}=1$ or $k=k^{\prime}=-1$. As $m k=n, m$ is positive and n is non-negative, we can conclude that $k=1$ and $m=n$.

Modular Arithmetic

■ You have m sweets.

- There are k kids showing up for trick-or-treating.
- To keep everything fair, every kid gets the same amount of treats.
■ You may enjoy the rest. :-)
■ How much does every kid get, how much do you get?

Euclid's Division Lemma

Theorem (Euclid's division lemma)
For all integers a and b with $b \neq 0$
there are unique integers q and r
with $a=q b+r$ and $0 \leq r<|b|$.
Number a is called the dividend, b the divisor, q is the quotient and r the remainder.

Without proof.

Euclid's Division Lemma

Theorem (Euclid's division lemma)
For all integers a and b with $b \neq 0$
there are unique integers q and r
with $a=q b+r$ and $0 \leq r<|b|$.
Number a is called the dividend, b the divisor, q is the quotient and r the remainder.

Without proof.
Examples:

- $a=18, b=5$
- $a=5, b=18$

■ $a=-18, b=5$

- $a=18, b=-5$

Modulo Operation

■ With $a \bmod b$ we refer to the remainder of Euclidean division.

Modulo Operation

■ With $a \bmod b$ we refer to the remainder of Euclidean division.

- Most programming languages have a built-in operator to compute $a \bmod b$ (for positive integers):

$$
\begin{aligned}
& \text { int } \bmod =34 \% 7 ; \\
& / / \text { result } 6 \text { because } 4 * 7+6=34
\end{aligned}
$$

Modulo Operation

■ With $a \bmod b$ we refer to the remainder of Euclidean division.
■ Most programming languages have a built-in operator to compute $a \bmod b$ (for positive integers):

$$
\begin{aligned}
& \text { int } \bmod =34 \% 7 ; \\
& / / \text { result } 6 \text { because } 4 * 7+6=34
\end{aligned}
$$

■ Common application: Determine whether a natural number n is even.

$$
\text { n \% } 2=0
$$

Modulo Operation

■ With $a \bmod b$ we refer to the remainder of Euclidean division.
■ Most programming languages have a built-in operator to compute $a \bmod b$ (for positive integers):

$$
\begin{aligned}
& \text { int } \bmod =34 \% 7 ; \\
& / / \text { result } 6 \text { because } 4 * 7+6=34
\end{aligned}
$$

■ Common application: Determine whether a natural number n is even.

$$
\text { n \% } 2=0
$$

■ Languages behave differently with negative operands!

def share_sweets(no_kids, no_sweets): print("Each kid gets", no_sweets // no_kids,
"of the sweets.")
print("You may keep", no_sweets \% no_kids,
"of the sweets.")

Congruence Modulo n

- We now are no longer interested in the value of the remainder but will consider numbers a and a^{\prime} as equivalent if the remainder with division by a given number b is equal.

Congruence Modulo n

- We now are no longer interested in the value of the remainder but will consider numbers a and a^{\prime} as equivalent if the remainder with division by a given number b is equal.
■ Consider the clock:

Congruence Modulo n

- We now are no longer interested in the value of the remainder but will consider numbers a and a^{\prime} as equivalent if the remainder with division by a given number b is equal.
■ Consider the clock:
■ It's now 3 o'clock

Congruence Modulo n

- We now are no longer interested in the value of the remainder but will consider numbers a and a^{\prime} as equivalent if the remainder with division by a given number b is equal.
■ Consider the clock:
- It's now 3 o'clock
- In 12 hours its 3 o'clock

Congruence Modulo n

- We now are no longer interested in the value of the remainder but will consider numbers a and a^{\prime} as equivalent if the remainder with division by a given number b is equal.
■ Consider the clock:
■ It's now 3 o'clock
- In 12 hours its 3 o'clock
- Same in 24, 36, 48, \ldots hours.

Congruence Modulo n

- We now are no longer interested in the value of the remainder but will consider numbers a and a^{\prime} as equivalent if the remainder with division by a given number b is equal.
■ Consider the clock:
- It's now 3 o'clock
- In 12 hours its 3 o'clock
- Same in 24, 36, 48, . . hours.
- 15:00 and 3:00 are shown the same.

Congruence Modulo n

- We now are no longer interested in the value of the remainder but will consider numbers a and a^{\prime} as equivalent if the remainder with division by a given number b is equal.
■ Consider the clock:
■ It's now 3 o'clock
- In 12 hours its 3 o'clock
- Same in 24, 36, 48, . . hours.
- 15:00 and 3:00 are shown the same.
- In the following, we will express this as $3 \equiv 15(\bmod 12)$

Congruence Modulo n - Definition

Definition (Congruence modulo n)
For integer $n>1$, two integers a and b are called congruent modulo n if $n \mid a-b$.
We write this as $a \equiv b(\bmod n)$.

Congruence Modulo n - Definition

Definition (Congruence modulo n)

For integer $n>1$, two integers a and b are called congruent modulo n if $n \mid a-b$.
We write this as $a \equiv b(\bmod n)$.

Which of the following statements are true?

- $0 \equiv 5(\bmod 5)$
- $1 \equiv 6(\bmod 5)$
- $4 \equiv 14(\bmod 5)$
- $-8 \equiv 7(\bmod 5)$
- $2 \equiv-3(\bmod 5)$

Congruence Modulo n - Definition

Definition (Congruence modulo n)

For integer $n>1$, two integers a and b are called congruent modulo n if $n \mid a-b$.
We write this as $a \equiv b(\bmod n)$.

Which of the following statements are true?

- $0 \equiv 5(\bmod 5)$
- $1 \equiv 6(\bmod 5)$
- $4 \equiv 14(\bmod 5)$
- $-8 \equiv 7(\bmod 5)$
- $2 \equiv-3(\bmod 5)$

Why is this the same concept as described in the clock example?!?

Congruence Corresponds to Equal Remainders

Theorem

For integers a and b and integer $n>1$ it holds that $a \equiv b(\bmod n)$ iff there are $q, q^{\prime}, r \in \mathbb{Z}$ with

$$
\begin{aligned}
& a=q n+r \\
& b=q^{\prime} n+r .
\end{aligned}
$$

Congruence Corresponds to Equal Remainders

Theorem

For integers a and b and integer $n>1$ it holds that $a \equiv b(\bmod n)$ iff there are $q, q^{\prime}, r \in \mathbb{Z}$ with

$$
\begin{aligned}
& a=q n+r \\
& b=q^{\prime} n+r .
\end{aligned}
$$

Proof sketch.

" \Rightarrow ": If $n \mid a-b$ then there is a $k \in \mathbb{Z}$ with $k n=a-b$.

Congruence Corresponds to Equal Remainders

Theorem

For integers a and b and integer $n>1$ it holds that $a \equiv b(\bmod n)$ iff there are $q, q^{\prime}, r \in \mathbb{Z}$ with

$$
\begin{aligned}
& a=q n+r \\
& b=q^{\prime} n+r .
\end{aligned}
$$

Proof sketch.

" \Rightarrow ": If $n \mid a-b$ then there is a $k \in \mathbb{Z}$ with $k n=a-b$.
As $n \neq 0$, by Euclid's lemma there are $q, q^{\prime}, r, r^{\prime} \in \mathbb{Z}$ with $a=q n+r$ and $b=q^{\prime} n+r^{\prime}$, where $0 \leq r<|n|$ and $0 \leq r^{\prime}<|n|$.

Congruence Corresponds to Equal Remainders

Theorem

For integers a and b and integer $n>1$ it holds that $a \equiv b(\bmod n)$ iff there are $q, q^{\prime}, r \in \mathbb{Z}$ with

$$
\begin{aligned}
& a=q n+r \\
& b=q^{\prime} n+r .
\end{aligned}
$$

Proof sketch.

" \Rightarrow ": If $n \mid a-b$ then there is a $k \in \mathbb{Z}$ with $k n=a-b$.
As $n \neq 0$, by Euclid's lemma there are $q, q^{\prime}, r, r^{\prime} \in \mathbb{Z}$ with $a=q n+r$ and $b=q^{\prime} n+r^{\prime}$, where $0 \leq r<|n|$ and $0 \leq r^{\prime}<|n|$.
Together, we get that $k n=q n+r-\left(q^{\prime} n+r^{\prime}\right)$, which is the case iff $k n+r^{\prime}=\left(q-q^{\prime}\right) n+r$. By Euclid's lemma, quotients and remainders are unique, so in particular $r^{\prime}=r$.

Congruence Corresponds to Equal Remainders

Theorem

For integers a and b and integer $n>1$ it holds that $a \equiv b(\bmod n)$ iff there are $q, q^{\prime}, r \in \mathbb{Z}$ with

$$
\begin{aligned}
& a=q n+r \\
& b=q^{\prime} n+r .
\end{aligned}
$$

Proof sketch.

" \Rightarrow ": If $n \mid a-b$ then there is a $k \in \mathbb{Z}$ with $k n=a-b$.
As $n \neq 0$, by Euclid's lemma there are $q, q^{\prime}, r, r^{\prime} \in \mathbb{Z}$ with $a=q n+r$ and $b=q^{\prime} n+r^{\prime}$, where $0 \leq r<|n|$ and $0 \leq r^{\prime}<|n|$.
Together, we get that $k n=q n+r-\left(q^{\prime} n+r^{\prime}\right)$, which is the case iff $k n+r^{\prime}=\left(q-q^{\prime}\right) n+r$. By Euclid's lemma, quotients and remainders are unique, so in particular $r^{\prime}=r$.
" \Leftarrow ": If we subtract the equations, we get $a-b=\left(q-q^{\prime}\right) n$, so $n \mid a-b$ and $a \equiv b(\bmod n)$.

Congruence Modulo n is an Equivalence Relation

Theorem

Congruence modulo n is an equivalence relation.
Proof sketch.

Congruence Modulo n is an Equivalence Relation

Theorem

Congruence modulo n is an equivalence relation.
Proof sketch.
Reflexive: $a \equiv a(\bmod n)$ because every integer divides 0 .

Congruence Modulo n is an Equivalence Relation

Theorem

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: $a \equiv a(\bmod n)$ because every integer divides 0 .
Symmetric: $a \equiv b(\bmod n)$ iff $n \mid a-b$ iff $n \mid b-a$ iff $b \equiv a(\bmod n)$.

Congruence Modulo n is an Equivalence Relation

Theorem

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: $a \equiv a(\bmod n)$ because every integer divides 0 .
Symmetric: $a \equiv b(\bmod n)$ iff $n \mid a-b$ iff $n \mid b-a$ iff $b \equiv a(\bmod n)$.
Transitive: If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ then $n \mid a-b$ and $n \mid b-c$. Together, these imply that $n \mid a-b+b-c$. From $n \mid a-c$ we get $a \equiv c(\bmod n)$.

Congruence Modulo n is an Equivalence Relation

Theorem

Congruence modulo n is an equivalence relation.

Proof sketch.

Reflexive: $a \equiv a(\bmod n)$ because every integer divides 0 .
Symmetric: $a \equiv b(\bmod n)$ iff $n \mid a-b$ iff $n \mid b-a$
iff $b \equiv a(\bmod n)$.
Transitive: If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ then $n \mid a-b$ and $n \mid b-c$. Together, these imply that $n \mid a-b+b-c$. From $n \mid a-c$ we get $a \equiv c(\bmod n)$.

For modulus n, the equivalence class of a is $\bar{a}_{n}=\{\ldots, a-2 n, a-n, a, a+n, a+2 n, \ldots\}$. Set \bar{a}_{n} is called the congruence class or residue of a modulo n.

Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction, multiplication, translation, scaling and exponentiation, i.e. if $a \equiv b(\bmod n)$ and $a^{\prime} \equiv b^{\prime}(\bmod n)$ then
$\square a+a^{\prime} \equiv b+b^{\prime}(\bmod n)$,

- $a-a^{\prime} \equiv b-b^{\prime}(\bmod n)$,
- $a a^{\prime} \equiv b b^{\prime}(\bmod n)$,
- $a+k \equiv b+k(\bmod n)$ for all $k \in \mathbb{Z}$,
- ak $\equiv b k(\bmod n)$ for all $k \in \mathbb{Z}$, and
- $a^{k} \equiv b^{k}(\bmod n)$ for all $k \in \mathbb{N}_{0}$.

Compatibility with Operations

Theorem

Congruence modulo n is compatible with addition, subtraction, multiplication, translation, scaling and exponentiation, i.e. if $a \equiv b(\bmod n)$ and $a^{\prime} \equiv b^{\prime}(\bmod n)$ then
$\square a+a^{\prime} \equiv b+b^{\prime}(\bmod n)$,

- $a-a^{\prime} \equiv b-b^{\prime}(\bmod n)$,
- $a a^{\prime} \equiv b b^{\prime}(\bmod n)$,
- $a+k \equiv b+k(\bmod n)$ for all $k \in \mathbb{Z}$,
- ak $\equiv b k(\bmod n)$ for all $k \in \mathbb{Z}$, and
- $a^{k} \equiv b^{k}(\bmod n)$ for all $k \in \mathbb{N}_{0}$.

Congruence modulo n is a so-called congruence relation (= equivalence relation compatible with operations).

Summary

Summary

- m divides n (written $m \mid n$) if n is a multiple of m, i.e. there is an integer k with $n=m k$.

■ Divisibility is compatible with multiplication and exponentiation.

- Divisibility over the natural numbers is a partial order.
- The modulo operation a mod b corresponds to the remainder of Euclidean division.
- Congruence modulo n considers integers equivalent if they have with divisor n the same remainder.
- Congurence modulo n is an equivalence relation that is compatible with the arithmetic operations.

