

B7.1 Operations on Relations

Discrete Mathematics in Computer Science October 23, 2023 — B7. Operations on Relations B7.1 Operations on Relations

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 23, 2023 2 / 13

B7. Operations on Relations	Operations on Relations
Set Operations	
 Relations are sets of tuples, so we can bu intersection, complement, 	ild their union,
Let R be a relation over S ₁ ,, S _n and F S' ₁ ,, S' _n . Then R∪R' is a relation over With the standard relations <, = and ≤ t relation ≤ corresponds to the union of re	\mathbb{R}' a relation over $S_1 \cup S'_1, \dots, S_n \cup S'_n$. for \mathbb{N}_0 , lations $<$ and $=$.
 Let R and R' be relations over n sets. Then R ∩ R' is a relation. Over which sets? With the standard relations ≤, = and ≥ for relation = corresponds to the intersection 	for \mathbb{N}_0 , n of \leq and \geq .
 If R is a relation over S₁,, S_n then so is the complementary relation R = (S₁ × ··· × S_n) \ R. With the standard relations for N₀, relation = is the complementary relation of ≠ and > the one of ≤. 	
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science October 23, 2023 5 / 13	

B7. Operations on Relations

Operations on Relations

Composition of Relations

Definition (Composition of relations)

Let R_1 be a relation over A and B and R_2 a relation over B and C. The composition of R_1 and R_2 is the relation $R_2 \circ R_1$ over A and C with:

> $R_2 \circ R_1 = \{(a, c) \mid there is a b \in B \text{ with} \}$ $(a, b) \in R_1$ and $(b, c) \in R_2$

How can we illustrate this graphically?

B7. Operations on Relations

Inverse of a Relation

Definition

Let $R \subseteq A \times B$ be a binary relation over A and B. The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ given by $R^{-1} = \{(b, a) \mid (a, b) \in R\}.$

- The inverse of the < relation over \mathbb{N}_0 is the > relation.
- \blacktriangleright Relation R with xRy iff person x has a key for y. Inverse: Q with aQb iff lock a can be openened by person b.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 23, 2023 6 / 13

B7. Operations on Relations

Operations on Relations

Composition is Associative

Theorem (Associativity of composition) Let S_1, \ldots, S_4 be sets and R_1, R_2, R_3 relations with $R_i \subseteq S_i \times S_{i+1}$. Then

 $R_3 \circ (R_2 \circ R_1) = (R_3 \circ R_2) \circ R_1$

Proof.

It holds that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there is an x_3 with $(x_1, x_3) \in R_2 \circ R_1$ and $(x_3, x_4) \in R_3$. As $(x_1, x_3) \in R_2 \circ R_1$ iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_3) \in R_2$, we have overall that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there are x_2, x_3 with $(x_1, x_2) \in R_1$, $(x_2, x_3) \in R_2$ and $(x_3, x_4) \in R_3$. This is the case iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_4) \in R_3 \circ R_2$, which holds iff $(x_1, x_4) \in (R_3 \circ R_2) \circ R_1$. M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science October 23, 2023 9 / 13

B7. Operations on Relations

Operations on Relations

Transitive Closure and *n*-fold Composition Define the *n*-fold composition of a relation R over S as $R^0 = \{(x, x) \mid x \in S\}$ and $R^i = R \circ R^{i-1}$ for i > 1Theorem Let R be a relation over set S. Then $R^+ = \bigcup_{i=1}^{\infty} R^i$ and $R^* = \bigcup_{i=0}^{\infty} R^i$. Without proof.

B7. Operations on Relations

Operations on Relations

(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)

Let R be a relation over set S.

The transitive closure R^+ of R is the smallest relation over S that is transitive and has R as a subset.

The reflexive transitive closure R^* of R is the smallest relation over S that is reflexive, transitive and has R as a subset.

The (reflexive) transitive closure always exists. Why?

Example: If *aRb* specifies that there is a direct flight from *a* to *b*, what do R^+ and R^* express?

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 23, 2023 10 / 13

