Discrete Mathematics in Computer Science B7. Operations on Relations

Malte Helmert, Gabriele Röger

University of Basel
October 23, 2023

Discrete Mathematics in Computer Science

 October 23, 2023 - B7. Operations on Relations
B7.1 Operations on Relations

B7.1 Operations on Relations

Relations: Recap

- A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
- A binary relation is a relation over two sets.
- A homogeneous relation R over set S is a binary relation $R \subseteq S \times S$.

Set Operations

- Relations are sets of tuples, so we can build their union, intersection, complement,
- Let R be a relation over S_{1}, \ldots, S_{n} and R^{\prime} a relation over $S_{1}^{\prime}, \ldots, S_{n}^{\prime}$. Then $R \cup R^{\prime}$ is a relation over $S_{1} \cup S_{1}^{\prime}, \ldots, S_{n} \cup S_{n}^{\prime}$.
With the standard relations $<,=$ and \leq for \mathbb{N}_{0}, relation \leq corresponds to the union of relations $<$ and $=$.
- Let R and R^{\prime} be relations over n sets.

Then $R \cap R^{\prime}$ is a relation.
Over which sets?
With the standard relations $\leq,=$ and \geq for \mathbb{N}_{0}, relation $=$ corresponds to the intersection of \leq and \geq.

- If R is a relation over S_{1}, \ldots, S_{n} then so is the complementary relation $\bar{R}=\left(S_{1} \times \cdots \times S_{n}\right) \backslash R$. With the standard relations for \mathbb{N}_{0}, relation $=$ is the complementary relation of \neq and $>$ the one of \leq.

Inverse of a Relation

Definition

Let $R \subseteq A \times B$ be a binary relation over A and B.
The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ given by $R^{-1}=\{(b, a) \mid(a, b) \in R\}$.

- The inverse of the $<$ relation over \mathbb{N}_{0} is the $>$ relation.
- Relation R with $x R y$ iff person x has a key for y. Inverse: Q with $a Q b$ iff lock a can be openened by person b.

Composition of Relations

Definition (Composition of relations)
Let R_{1} be a relation over A and B and R_{2} a relation over B and C. The composition of R_{1} and R_{2} is the relation $R_{2} \circ R_{1}$ over A and C with:

$$
\begin{aligned}
& R_{2} \circ R_{1}=\{(a, c) \mid \text { there is } a b \in B \text { with } \\
& \left.\qquad(a, b) \in R_{1} \text { and }(b, c) \in R_{2}\right\}
\end{aligned}
$$

How can we illustrate this graphically?

Composition of Relations: Example

$$
\begin{aligned}
& S_{1}=\{1,2,3,4\} \\
& S_{2}=\{A, B, C, D, E\} \\
& S_{3}=\{a, b, c, d\} \\
& R_{1}=\{(1, A),(1, B),(3, B),(4, D)\} \text { over } S_{1} \text { and } S_{2} \\
& R_{2}=\{(B, a),(C, c),(D, a),(D, d)\} \text { over } S_{2} \text { and } S_{3} \\
& R_{2} \circ R_{1}=
\end{aligned}
$$

Composition is Associative

Theorem (Associativity of composition)

Let S_{1}, \ldots, S_{4} be sets and R_{1}, R_{2}, R_{3} relations with $R_{i} \subseteq S_{i} \times S_{i+1}$. Then

$$
R_{3} \circ\left(R_{2} \circ R_{1}\right)=\left(R_{3} \circ R_{2}\right) \circ R_{1} .
$$

Proof.

It holds that $\left(x_{1}, x_{4}\right) \in R_{3} \circ\left(R_{2} \circ R_{1}\right)$ iff there is an x_{3} with $\left(x_{1}, x_{3}\right) \in R_{2} \circ R_{1}$ and $\left(x_{3}, x_{4}\right) \in R_{3}$.

As $\left(x_{1}, x_{3}\right) \in R_{2} \circ R_{1}$ iff there is an x_{2} with $\left(x_{1}, x_{2}\right) \in R_{1}$ and $\left(x_{2}, x_{3}\right) \in R_{2}$, we have overall that $\left(x_{1}, x_{4}\right) \in R_{3} \circ\left(R_{2} \circ R_{1}\right)$ iff there are x_{2}, x_{3} with $\left(x_{1}, x_{2}\right) \in R_{1},\left(x_{2}, x_{3}\right) \in R_{2}$ and $\left(x_{3}, x_{4}\right) \in R_{3}$.

This is the case iff there is an x_{2} with $\left(x_{1}, x_{2}\right) \in R_{1}$ and $\left(x_{2}, x_{4}\right) \in R_{3} \circ R_{2}$, which holds iff $\left(x_{1}, x_{4}\right) \in\left(R_{3} \circ R_{2}\right) \circ R_{1}$.

(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)
Let R be a relation over set S.
The transitive closure R^{+}of R is the smallest relation over S that is transitive and has R as a subset.

The reflexive transitive closure R^{*} of R is the smallest relation over S that is reflexive, transitive and has R as a subset.

The (reflexive) transitive closure always exists. Why?
Example: If $a R b$ specifies that there is a direct flight from a to b, what do R^{+}and R^{*} express?

Transitive Closure and n-fold Composition

Define the n-fold composition of a relation R over S as

$$
\begin{aligned}
R^{0} & =\{(x, x) \mid x \in S\} & & \text { and } \\
R^{i} & =R \circ R^{i-1} & & \text { for } i>1 .
\end{aligned}
$$

Theorem
Let R be a relation over set S. Then $R^{+}=\bigcup_{i=1}^{\infty} R^{i}$ and $R^{*}=\bigcup_{i=0}^{\infty} R^{i}$.

Without proof.

Other Operators

- There are many more operators, also for general relations.
- Highly relevant for queries over relational databases.
- For example, join operators combine relations based on common entries.
- Example for a natural join:

Employee		
Name	Empld	DeptName
Harry	3415	Finance
Sally	2241	Sales
George	3401	Finance
Harriet	2202	Sales
Mary	1257	Human Resources

Dept	
DeptName	Manager
Finance	George
Sales	Harriet
Production	Charles

Employee \pitchfork Dept			
Name	EmpId	DeptName	Manager
Harry	3415	Finance	George
Sally	2241	Sales	Harriet
George	3401	Finance	George
Harriet	2202	Sales	Harriet

Summary

- Relations: general, binary, homogeneous
- Properties: reflexivity, symmetry, transitivity (and related properties)
- Special relations: equivalence relations, order relations
- Operations: inverse, composition, transitive closure

