Discrete Mathematics in Computer Science B6. Equivalence and Order Relations

Malte Helmert, Gabriele Röger

University of Basel

October 18/23, 2023

Equivalence Relations

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.
- Possible properties of homogeneous relations *R* over *S*:

- A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.
- Possible properties of homogeneous relations R over S:
 reflexive: (x, x) ∈ R for all x ∈ S

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- **symmetric:** $(x, y) \in R$ iff $(y, x) \in R$

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- **asymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- **asymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$
- **antisymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$ or x = y

• A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- **asymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$
- **antisymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$ or x = y
- transitive: if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$

Motivation

- Think of any attribute that two objects can have in common, e.g. their color.
- We could place the objects into distinct "buckets",
 e. g. one bucket for each color.
- We also can define a relation ~ such that x ~ y iff
 x and y share the attribute, e.g.have the same color.
- Would this relation be
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Examples:

- {(x, y) | x and y have the same place of origin}
 over the set of all Swiss citizens
- $\{(x, y) \mid x \text{ and } y \text{ have the same parity} \}$ over \mathbb{N}_0
- $\{(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5),\\(2,2),(2,3),(3,2),(3,3)\} \text{ over } \{1,2,\ldots,5\}$

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Examples:

- {(x, y) | x and y have the same place of origin}
 over the set of all Swiss citizens
- $\{(x, y) \mid x \text{ and } y \text{ have the same parity} \}$ over \mathbb{N}_0
- $\{(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5),\\(2,2),(2,3),(3,2),(3,3)\} \text{ over } \{1,2,\ldots,5\}$

Is this definition indeed what we want? Does it allow us to partition the objects into buckets (e.g. one "bucket" for all objects that share a specific color)?

Equivalence Classes

Definition (equivalence class)

Let \sim be an equivalence relation over set S.

For any $x \in S$, the equivalence class of x is the set

 $[x]_{\sim} = \{y \in S \mid x \sim y\}.$

Equivalence Classes

Definition (equivalence class)

Let \sim be an equivalence relation over set *S*.

For any $x \in S$, the equivalence class of x is the set

 $[x]_{\sim} = \{y \in S \mid x \sim y\}.$

Consider

 $\begin{array}{l} \sim = \{(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5),\\ (2,2),(2,3),(3,2),(3,3)\} \\ \text{over set } \{1,2,\ldots,5\}. \end{array}$

[4]_~ =

Equivalence Classes: Properties

Let \sim be an equivalence relation over set S and $E = \{[x]_{\sim} \mid x \in S\}$ the set of all equivalence classes.

- Every element of S is in some equivalence class in E.
- Every element of *S* is in at most one equivalence class in *E*. → homework assignment

Equivalence Classes: Properties

Let \sim be an equivalence relation over set S and $E = \{[x]_{\sim} \mid x \in S\}$ the set of all equivalence classes.

- Every element of S is in some equivalence class in E.
 Every element of S is in at most one equivalence class in E.
 - → homework assignment
- \Rightarrow Equivalence relations induce partitions (not covered in this course).

Questions

Questions?

Order Relations

Order Relations

We now consider other combinations of properties, that allow us to describe a consistent order of the objects.

Order Relations

- We now consider other combinations of properties, that allow us to describe a consistent order of the objects.
- "Number x is not larger than number y."
 "Set S is a subset of set T."
 "Jerry runs at least as fast as Tom."
 "Pasta tastes better than Potatoes."

Partial Orders

• We begin with partial orders.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N}_0 or \subseteq for sets.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N}_0 or \subseteq for sets.
- Are these relations
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Partial Orders – Definition

Definition (Partial order)

A binary relation \leq over set S is a partial order

if \leq is reflexive, antisymmetric and transitive.

Partial Orders – Definition

Definition (Partial order)

A binary relation \leq over set S is a partial order if \leq is reflexive, antisymmetric and transitive.

Which of these relations are partial orders?

- strict subset relation \subset for sets
- not-less-than relation \geq over \mathbb{N}_0
- $R = \{(a, a), (a, b), (b, b), (b, c), (c, c)\}$ over $\{a, b, c\}$

Definition (Least and greatest element)

Let \leq be a partial order over set *S*. An element $x \in S$ is the least element of *S* if for all $y \in S$ it holds that $x \leq y$. It is the greatest element of *S* if for all $y \in S$, $y \leq x$.

Definition (Least and greatest element)

Let \leq be a partial order over set *S*. An element $x \in S$ is the least element of *S* if for all $y \in S$ it holds that $x \leq y$. It is the greatest element of *S* if for all $y \in S$, $y \leq x$.

■ Is there a least/greatest element? Which one? ■ $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$

Definition (Least and greatest element)

Let \leq be a partial order over set *S*. An element $x \in S$ is the least element of *S* if for all $y \in S$ it holds that $x \leq y$. It is the greatest element of *S* if for all $y \in S$, $y \leq x$.

Is there a least/greatest element? Which one?

■
$$S = \{1, 2, 3\}$$
 and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$
■ relation \leq over \mathbb{N}_0

Definition (Least and greatest element)

Let \leq be a partial order over set *S*. An element $x \in S$ is the least element of *S* if for all $y \in S$ it holds that $x \leq y$. It is the greatest element of *S* if for all $y \in S$, $y \leq x$.

Is there a least/greatest element? Which one?

■
$$S = \{1, 2, 3\}$$
 and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$
■ relation \leq over \mathbb{N}_0
■ relation \leq over \mathbb{Z}

Definition (Least and greatest element)

Let \leq be a partial order over set *S*. An element $x \in S$ is the least element of *S* if for all $y \in S$ it holds that $x \leq y$. It is the greatest element of *S* if for all $y \in S$, $y \leq x$.

Is there a least/greatest element? Which one?

•
$$S = \{1, 2, 3\}$$
 and $\preceq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$

• relation \leq over \mathbb{N}_0

• relation \leq over \mathbb{Z}

Why can we say the least element instead of a least element?

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

Theorem

Let \leq be a partial order over set S. If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \leq y$ is true. Since y is a least element, $y \leq x$ is true.

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \leq y$ is true. Since y is a least element, $y \leq x$ is true. As a partial order is antisymmetric, this implies that x = y. \notin

Uniqueness of Least Element

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \leq y$ is true. Since y is a least element, $y \leq x$ is true. As a partial order is antisymmetric, this implies that x = y. \notin

Analogously: If there is a greatest element then is unique.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let \leq be a partial order over set *S*. An element $x \in S$ is a minimal element of *S* if there is no $y \in S$ with $y \leq x$ and $x \neq y$. An element $x \in S$ is a maximal element of *S* if there is no $y \in S$ with $x \leq y$ and $x \neq y$.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let \leq be a partial order over set *S*. An element $x \in S$ is a minimal element of *S* if there is no $y \in S$ with $y \leq x$ and $x \neq y$. An element $x \in S$ is a maximal element of *S* if there is no $y \in S$ with $x \leq y$ and $x \neq y$.

A set can have several minimal elements and no least element. Example?

 \blacksquare Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.

- \blacksquare Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?

- \blacksquare Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both).

- Relations < over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both). • $\{1,2\} \not\subset \{2,3\}$ and $\{2,3\} \not\subset \{1,2\}$

- $\blacksquare \ \mbox{Relations} \le \mbox{over} \ \mathbb{N}_0 \ \mbox{and} \ \subseteq \mbox{for sets are partial orders}.$
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both). ■ $\{1,2\} \nsubseteq \{2,3\}$ and $\{2,3\} \oiint \{1,2\}$

Relation \leq is a total order, relation \subseteq is not.

Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex) if for all $x, y \in S$ at least one of xRy or yRx is true.

Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex) if for all $x, y \in S$ at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.

Questions

Questions?

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.
- Example strict order relations are < over \mathbb{N}_0 or \subset for sets.

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.
- Example strict order relations are < over \mathbb{N}_0 or \subset for sets.
- Are these relations
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

- subset relation \subseteq for sets
- strict superset relation \supset for sets

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

- subset relation \subseteq for sets
- strict superset relation \supset for sets

Can a relation be both, a partial order and a strict order?

 As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."

No ranking of pasta against rice or of pasta against bread.

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.
- Example 2: ⊂ relation for sets

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.
- Example 2: ⊂ relation for sets
- It doesn't work to simply require that the strict order is total. Why?

Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

A strict total order completely ranks the elements of set S. Example: < relation over \mathbb{N}_0 gives the standard ordering $0, 1, 2, 3, \ldots$ of natural numbers.

Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set) Let \prec be a strict order over set S. An element $x \in S$ is the least element of S if for all $y \in S$ where $y \neq x$ it holds that $x \prec y$. It is the greatest element of S if for all $y \in S$ where $y \neq x, y \prec x$. Element $x \in S$ is a minimal element of S if there is no $y \in S$ with $y \prec x$. It is a maximal element of Sif there is no $y \in S$ with $x \prec y$.

Special Elements – Example

Consider again the previous example:

 $S = \{Pasta, Potato, Bread, Rice\}$ $\prec = \{(Pasta, Potato), (Bread, Potato), (Rice, Potato), (Rice, Bread)\}$

Is there a least and a greatest element? Which elements are maximal or minimal?

Questions

Questions?

• An equivalence relation is reflexive, symmetric and transitive.

Summary

- An equivalence relation is reflexive, symmetric and transitive.
- A partial order $x \leq y$ is reflexive, antisymmetric and transitive.
 - If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \preceq x$.
 - If x is a maximal element of set S then it is not smaller than any other element y: there is no $y \in S$ with $x \preceq y$ and $x \neq y$.
 - A total order is a partial order without incomparable objects.

Summary

- An equivalence relation is reflexive, symmetric and transitive.
- A partial order $x \leq y$ is reflexive, antisymmetric and transitive.
 - If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \preceq x$.
 - If x is a maximal element of set S then it is not smaller than any other element y: there is no y ∈ S with x ≤ y and x ≠ y.
 - A total order is a partial order without incomparable objects.
- A strict order is irreflexive, asymmetric and transitive.
 - Strict total orders and special elements are analogously defined as for partial orders but with a special treatment of equal elements.