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Equivalence Relations



Relations: Recap

A relation over sets S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

Possible properties of homogeneous relations R over S :

reflexive: (x , x) ∈ R for all x ∈ S
irreflexive: (x , x) /∈ R for all x ∈ S
symmetric: (x , y) ∈ R iff (y , x) ∈ R
asymmetric: if (x , y) ∈ R then (y , x) /∈ R
antisymmetric: if (x , y) ∈ R then (y , x) /∈ R or x = y
transitive: if (x , y) ∈ R and (y , z) ∈ R then (x , z) ∈ R
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Motivation

Think of any attribute that two objects can have in common,
e. g. their color.

We could place the objects into distinct “buckets”,
e. g. one bucket for each color.

We also can define a relation ∼ such that x ∼ y iff
x and y share the attribute, e. g.have the same color.

Would this relation be

reflexive?
irreflexive?
symmetric?
asymmetric?
antisymmetric?
transitive?



Equivalence Relation

Definition (Equivalence Relation)

A binary relation ∼ over set S is an equivalence relation
if ∼ is reflexive, symmetric and transitive.

Examples:

{(x , y) | x and y have the same place of origin}
over the set of all Swiss citizens

{(x , y) | x and y have the same parity} over N0

{(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),
(2, 2), (2, 3), (3, 2), (3, 3)} over {1, 2, . . . , 5}

Is this definition indeed what we want?
Does it allow us to partition the objects into buckets
(e. g. one “bucket” for all objects that share a specific color)?
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Equivalence Classes

Definition (equivalence class)

Let ∼ be an equivalence relation over set S .

For any x ∈ S , the equivalence class of x is the set

[x ]∼ = {y ∈ S | x ∼ y}.

Consider
∼= {(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5, 4), (5, 5),

(2, 2), (2, 3), (3, 2), (3, 3)}
over set {1, 2, . . . , 5}.

[4]∼ =
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Equivalence Classes: Properties

Let ∼ be an equivalence relation over set S and
E = {[x ]∼ | x ∈ S} the set of all equivalence classes.

Every element of S is in some equivalence class in E .

Every element of S is in at most one equivalence class in E .
⇝ homework assignment

⇒ Equivalence relations induce partitions
(not covered in this course).
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Questions

Questions?



Order Relations



Order Relations

We now consider other combinations of properties,
that allow us to describe a consistent order of the objects.

“Number x is not larger than number y .”
“Set S is a subset of set T .”
“Jerry runs at least as fast as Tom.”
“Pasta tastes better than Potatoes.”
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Partial Orders – Definition

Definition (Partial order)

A binary relation ⪯ over set S is a partial order
if ⪯ is reflexive, antisymmetric and transitive.

Which of these relations are partial orders?

strict subset relation ⊂ for sets

not-less-than relation ≥ over N0

R = {(a, a), (a, b), (b, b), (b, c), (c , c)} over {a, b, c}
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Least and Greatest Element

Definition (Least and greatest element)

Let ⪯ be a partial order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S it holds that x ⪯ y .

It is the greatest element of S if for all y ∈ S , y ⪯ x .

Is there a least/greatest element? Which one?

S = {1, 2, 3} and ⪯ = {(x , y) | x , y ∈ S and x ≤ y}
relation ≤ over N0

relation ≤ over Z
Why can we say the least element instead of a least element?
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Uniqueness of Least Element

Theorem

Let ⪯ be a partial order over set S .
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x , y are least elements of S with x ̸= y .

Since x is a least element, x ⪯ y is true.
Since y is a least element, y ⪯ x is true.
As a partial order is antisymmetric, this implies that x = y .  

Analogously: If there is a greatest element then is unique.
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Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let ⪯ be a partial order over set S .
An element x ∈ S is a minimal element of S
if there is no y ∈ S with y ⪯ x and x ̸= y .

An element x ∈ S is a maximal element of S
if there is no y ∈ S with x ⪯ y and x ̸= y .

A set can have several minimal elements and no least element.
Example?
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Total Orders

Relations ≤ over N0 and ⊆ for sets are partial orders.

Can we compare every object against every object?

For all x , y ∈ N0 it holds that x ≤ y or that y ≤ x (or both).
{1, 2} ⊈ {2, 3} and {2, 3} ⊈ {1, 2}

Relation ≤ is a total order, relation ⊆ is not.
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Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex)
if for all x , y ∈ S at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.
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Example strict order relations are < over N0 or ⊂ for sets.

Are these relations
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symmetric?
asymmetric?
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Strict Total Orders

As partial orders, a strict order does not automatically
allow us to rank arbitrary two objects against each other.

Example 1 (personal preferences):
“Pasta tastes better than potato.”
“Rice tastes better than bread.”
“Bread tastes better than potato.”
“Rice tastes better than potato.”

Pasta

Potato Bread

Rice

This definition of “tastes better than” is a strict order.
No ranking of pasta against rice or of pasta against bread.

Example 2: ⊂ relation for sets

It doesn’t work to simply require that the strict order is total.
Why?
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Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all x , y ∈ S
exactly one of xRy , yRx or x = y is true.

Definition (Strict total order)

A binary relation ≺ over S is a strict total order
if ≺ is trichotomous and a strict order.

A strict total order completely ranks the elements of set S .
Example: < relation over N0 gives the standard ordering

0, 1, 2, 3, . . . of natural numbers.
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Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)

Let ≺ be a strict order over set S .

An element x ∈ S is the least element of S
if for all y ∈ S where y ̸= x it holds that x ≺ y .

It is the greatest element of S if for all y ∈ S where y ̸= x , y ≺ x .

Element x ∈ S is a minimal element of S
if there is no y ∈ S with y ≺ x .

It is a maximal element of S
if there is no y ∈ S with x ≺ y .



Special Elements – Example

Consider again the previous example:

S = {Pasta,Potato,Bread,Rice}
≺ = {(Pasta,Potato), (Bread,Potato),

(Rice,Potato), (Rice,Bread)}

Pasta

Potato Bread

Rice

Is there a least and a greatest element?
Which elements are maximal or minimal?



Questions

Questions?



Summary

An equivalence relation is reflexive, symmetric and transitive.

A partial order x ⪯ y is reflexive, antisymmetric and
transitive.

If x is the greatest element of a set S , it is greater than every
element: for all y ∈ S it holds that y ⪯ x .
If x is a maximal element of set S then it is not smaller than
any other element y : there is no y ∈ S with x ⪯ y and x ̸= y .
A total order is a partial order without incomparable objects.

A strict order is irreflexive, asymmetric and transitive.

Strict total orders and special elements are analogously defined
as for partial orders but with a special treatment of equal
elements.
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