Discrete Mathematics in Computer Science B6. Equivalence and Order Relations

Malte Helmert, Gabriele Röger

University of Basel

October 18/23, 2023

Equivalence Relations

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- asymmetric: if $(x, y) \in R$ then $(y, x) \notin R$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- asymmetric: if $(x, y) \in R$ then $(y, x) \notin R$
- antisymmetric: if $(x, y) \in R$ then $(y, x) \notin R$ or $x=y$

Relations: Recap

■ A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
■ Possible properties of homogeneous relations R over S :

- reflexive: $(x, x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x, y) \in R$ iff $(y, x) \in R$
- asymmetric: if $(x, y) \in R$ then $(y, x) \notin R$
- antisymmetric: if $(x, y) \in R$ then $(y, x) \notin R$ or $x=y$
- transitive: if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$

Motivation

- Think of any attribute that two objects can have in common, e. g. their color.

■ We could place the objects into distinct "buckets",
e.g. one bucket for each color.

■ We also can define a relation \sim such that $x \sim y$ iff x and y share the attribute, e.g.have the same color.

- Would this relation be

■ reflexive?
■ irreflexive?
■ symmetric?
■ asymmetric?
■ antisymmetric?
■ transitive?

Equivalence Relation

Definition (Equivalence Relation)
A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Examples:

$\square\{(x, y) \mid x$ and y have the same place of origin $\}$ over the set of all Swiss citizens

- $\{(x, y) \mid x$ and y have the same parity $\}$ over \mathbb{N}_{0}
- $\{(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5)$,
$(2,2),(2,3),(3,2),(3,3)\}$ over $\{1,2, \ldots, 5\}$

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Examples:

- $\{(x, y) \mid x$ and y have the same place of origin $\}$ over the set of all Swiss citizens
- $\{(x, y) \mid x$ and y have the same parity $\}$ over \mathbb{N}_{0}
- $\{(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5)$,
$(2,2),(2,3),(3,2),(3,3)\}$ over $\{1,2, \ldots, 5\}$
Is this definition indeed what we want?
Does it allow us to partition the objects into buckets (e. g. one "bucket" for all objects that share a specific color)?

Equivalence Classes

Definition (equivalence class)

Let \sim be an equivalence relation over set S.
For any $x \in S$, the equivalence class of x is the set

$$
[x]_{\sim}=\{y \in S \mid x \sim y\} .
$$

Equivalence Classes

Definition (equivalence class)

Let \sim be an equivalence relation over set S.
For any $x \in S$, the equivalence class of x is the set

$$
[x]_{\sim}=\{y \in S \mid x \sim y\}
$$

Consider

```
~={(1, 1), (1, 4), (1, 5), (4, 1), (4, 4), (4, 5), (5, 1), (5,4), (5, 5),
    (2, 2),(2,3),(3,2),(3,3)}
over set {1,2,\ldots,5}.
```

$[4]_{\sim}=$

Equivalence Classes: Properties

Let \sim be an equivalence relation over set S and $E=\left\{[x]_{\sim} \mid x \in S\right\}$ the set of all equivalence classes.

- Every element of S is in some equivalence class in E.

■ Every element of S is in at most one equivalence class in E. \rightsquigarrow homework assignment

Equivalence Classes: Properties

Let \sim be an equivalence relation over set S and $E=\left\{[x]_{\sim} \mid x \in S\right\}$ the set of all equivalence classes.

- Every element of S is in some equivalence class in E.

■ Every element of S is in at most one equivalence class in E. \rightsquigarrow homework assignment
\Rightarrow Equivalence relations induce partitions (not covered in this course).

Questions

Questions?

Order Relations

Order Relations

- We now consider other combinations of properties, that allow us to describe a consistent order of the objects.

Order Relations

- We now consider other combinations of properties, that allow us to describe a consistent order of the objects.
- "Number x is not larger than number y."
"Set S is a subset of set T."
"Jerry runs at least as fast as Tom."
"Pasta tastes better than Potatoes."

Partial Orders

- We begin with partial orders.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N}_{0} or \subseteq for sets.

Partial Orders

- We begin with partial orders.

■ Example partial order relations are \leq over \mathbb{N}_{0} or \subseteq for sets.

- Are these relations
- reflexive?
- irreflexive?
- symmetric?
- asymmetric?
- antisymmetric?
- transitive?

Partial Orders - Definition

Definition (Partial order)
A binary relation \preceq over set S is a partial order if \preceq is reflexive, antisymmetric and transitive.

Partial Orders - Definition

Definition (Partial order)

A binary relation \preceq over set S is a partial order if \preceq is reflexive, antisymmetric and transitive.

Which of these relations are partial orders?
■ strict subset relation \subset for sets

- not-less-than relation \geq over \mathbb{N}_{0}

■ $R=\{(a, a),(a, b),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$

Least and Greatest Element

Definition (Least and greatest element)

Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

Least and Greatest Element

Definition (Least and greatest element)

Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

■ Is there a least/greatest element? Which one?
■ $S=\{1,2,3\}$ and $\preceq=\{(x, y) \mid x, y \in S$ and $x \leq y\}$

Least and Greatest Element

Definition (Least and greatest element)

Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

■ Is there a least/greatest element? Which one?
■ $S=\{1,2,3\}$ and $\preceq=\{(x, y) \mid x, y \in S$ and $x \leq y\}$

- relation \leq over \mathbb{N}_{0}

Least and Greatest Element

Definition (Least and greatest element)

Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

■ Is there a least/greatest element? Which one?

- $S=\{1,2,3\}$ and $\preceq=\{(x, y) \mid x, y \in S$ and $x \leq y\}$
- relation \leq over \mathbb{N}_{0}
- relation \leq over \mathbb{Z}

Least and Greatest Element

Definition (Least and greatest element)

Let \preceq be a partial order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ it holds that $x \preceq y$.
It is the greatest element of S if for all $y \in S, y \preceq x$.

■ Is there a least/greatest element? Which one?

- $S=\{1,2,3\}$ and $\preceq=\{(x, y) \mid x, y \in S$ and $x \leq y\}$
- relation \leq over \mathbb{N}_{0}
- relation \leq over \mathbb{Z}

■ Why can we say the least element instead of a least element?

Uniqueness of Least Element

> Theorem
> Let \preceq be a partial order over set S.
> If S contains a least element, it contains exactly one least element.

Uniqueness of Least Element

Theorem

Let \preceq be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

Uniqueness of Least Element

Theorem

Let \preceq be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \preceq y$ is true.
Since y is a least element, $y \preceq x$ is true.

Uniqueness of Least Element

Theorem

Let \preceq be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \preceq y$ is true.
Since y is a least element, $y \preceq x$ is true.
As a partial order is antisymmetric, this implies that $x=y$. $\&$

Uniqueness of Least Element

Theorem

Let \preceq be a partial order over set S.
If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$. Since x is a least element, $x \preceq y$ is true.
Since y is a least element, $y \preceq x$ is true.
As a partial order is antisymmetric, this implies that $x=y$. $\&$

Analogously: If there is a greatest element then is unique.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)
Let \preceq be a partial order over set S.
An element $x \in S$ is a minimal element of S
if there is no $y \in S$ with $y \preceq x$ and $x \neq y$.
An element $x \in S$ is a maximal element of S
if there is no $y \in S$ with $x \preceq y$ and $x \neq y$.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let \preceq be a partial order over set S.
An element $x \in S$ is a minimal element of S
if there is no $y \in S$ with $y \preceq x$ and $x \neq y$.
An element $x \in S$ is a maximal element of S
if there is no $y \in S$ with $x \preceq y$ and $x \neq y$.
A set can have several minimal elements and no least element. Example?

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.
■ Can we compare every object against every object?

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.
■ Can we compare every object against every object?
■ For all $x, y \in \mathbb{N}_{0}$ it holds that $x \leq y$ or that $y \leq x$ (or both).

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.
■ Can we compare every object against every object?

- For all $x, y \in \mathbb{N}_{0}$ it holds that $x \leq y$ or that $y \leq x$ (or both).
- $\{1,2\} \nsubseteq\{2,3\}$ and $\{2,3\} \nsubseteq\{1,2\}$

Total Orders

■ Relations \leq over \mathbb{N}_{0} and \subseteq for sets are partial orders.
■ Can we compare every object against every object?

- For all $x, y \in \mathbb{N}_{0}$ it holds that $x \leq y$ or that $y \leq x$ (or both).
- $\{1,2\} \nsubseteq\{2,3\}$ and $\{2,3\} \nsubseteq\{1,2\}$
- Relation \leq is a total order, relation \subseteq is not.

Total Order - Definition

Definition (Total relation)

A binary relation R over set S is total (or connex) if for all $x, y \in S$ at least one of $x R y$ or $y R x$ is true.

Total Order - Definition

Definition (Total relation)

A binary relation R over set S is total (or connex)
if for all $x, y \in S$ at least one of $x R y$ or $y R x$ is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.

Questions

Questions?

Strict Orders

■ A partial order is reflexive, antisymmetric and transitive.

- We now consider strict orders.

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.

■ Example strict order relations are $<$ over \mathbb{N}_{0} or \subset for sets.

Strict Orders

■ A partial order is reflexive, antisymmetric and transitive.

- We now consider strict orders.

■ Example strict order relations are $<$ over \mathbb{N}_{0} or \subset for sets.

- Are these relations
- reflexive?
- irreflexive?
- symmetric?
- asymmetric?
- antisymmetric?
- transitive?

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?
■ subset relation \subseteq for sets

- strict superset relation \supset for sets

Strict Orders - Definition

Definition (Strict order)
 A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?
■ subset relation \subseteq for sets

- strict superset relation \supset for sets

Can a relation be both, a partial order and a strict order?

Strict Total Orders

■ As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.

Strict Total Orders

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
■ Example 1 (personal preferences):
- "Pasta tastes better than potato."
- "Rice tastes better than bread."
- "Bread tastes better than potato."
- "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.

Strict Total Orders

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
- "Pasta tastes better than potato."
- "Rice tastes better than bread."
- "Bread tastes better than potato."
- "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.

■ Example 2: \subset relation for sets

Strict Total Orders

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
- "Pasta tastes better than potato."
- "Rice tastes better than bread."
- "Bread tastes better than potato."
- "Rice tastes better than potato."

- This definition of "tastes better than" is a strict order.
- No ranking of pasta against rice or of pasta against bread.
- Example 2: \subset relation for sets
- It doesn't work to simply require that the strict order is total. Why?

Strict Total Orders - Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of $x R y, y R x$ or $x=y$ is true.

Strict Total Orders - Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of $x R y, y R x$ or $x=y$ is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

A strict total order completely ranks the elements of set S.
Example: < relation over \mathbb{N}_{0} gives the standard ordering $0,1,2,3, \ldots$ of natural numbers.

Special Elements

Special elements are defined almost as for partial orders:
Definition (Least/greatest/minimal/maximal element of a set)
Let \prec be a strict order over set S.
An element $x \in S$ is the least element of S
if for all $y \in S$ where $y \neq x$ it holds that $x \prec y$.
It is the greatest element of S if for all $y \in S$ where $y \neq x, y \prec x$.
Element $x \in S$ is a minimal element of S
if there is no $y \in S$ with $y \prec x$.
It is a maximal element of S
if there is no $y \in S$ with $x \prec y$.

Special Elements - Example

Consider again the previous example:
$S=\{$ Pasta, Potato, Bread, Rice $\}$
$\prec=\{($ Pasta, Potato), (Bread, Potato), (Rice, Potato), (Rice, Bread) $\}$

Is there a least and a greatest element?
Which elements are maximal or minimal?

Questions

Questions?

Summary

■ An equivalence relation is reflexive, symmetric and transitive.

Summary

- An equivalence relation is reflexive, symmetric and transitive.

■ A partial order $x \preceq y$ is reflexive, antisymmetric and transitive.

■ If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \preceq x$.
■ If x is a maximal element of set S then it is not smaller than any other element y : there is no $y \in S$ with $x \preceq y$ and $x \neq y$.

- A total order is a partial order without incomparable objects.

■ An equivalence relation is reflexive, symmetric and transitive.

- A partial order $x \preceq y$ is reflexive, antisymmetric and transitive.

■ If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \preceq x$.

- If x is a maximal element of set S then it is not smaller than any other element y : there is no $y \in S$ with $x \preceq y$ and $x \neq y$.
- A total order is a partial order without incomparable objects.
- A strict order is irreflexive, asymmetric and transitive.
- Strict total orders and special elements are analogously defined as for partial orders but with a special treatment of equal elements.

