Discrete Mathematics in Computer Science B6. Equivalence and Order Relations

Malte Helmert, Gabriele Röger

University of Basel

October 18/23, 2023

Discrete Mathematics in Computer Science October 18/23, 2023 — B6. Equivalence and Order Relations

B6.1 Equivalence Relations

B6.2 Order Relations

B6.1 Equivalence Relations

Relations: Recap

- ▶ A relation over sets $S_1, ..., S_n$ is a set $R \subseteq S_1 \times \cdots \times S_n$.
- Possible properties of homogeneous relations R over S:
 - reflexive: $(x, x) \in R$ for all $x \in S$
 - ▶ irreflexive: $(x,x) \notin R$ for all $x \in S$
 - **symmetric:** $(x, y) \in R$ iff $(y, x) \in R$
 - **asymmetric**: if $(x, y) \in R$ then $(y, x) \notin R$
 - **antisymmetric:** if $(x, y) \in R$ then $(y, x) \notin R$ or x = y
 - transitive: if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$

Motivation

- Think of any attribute that two objects can have in common, e.g. their color.
- We could place the objects into distinct "buckets", e.g. one bucket for each color.
- We also can define a relation \sim such that $x \sim y$ iff x and y share the attribute, e.g. have the same color.
- Would this relation be
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Examples:

- \blacktriangleright { $(x, y) \mid x$ and y have the same place of origin} over the set of all Swiss citizens
- $\blacktriangleright \{(x,y) \mid x \text{ and } y \text{ have the same parity} \}$ over \mathbb{N}_0
- \blacktriangleright {(1,1), (1,4), (1,5), (4,1), (4,4), (4,5), (5,1), (5,4), (5,5), (2,2),(2,3),(3,2),(3,3) over $\{1,2,\ldots,5\}$

Is this definition indeed what we want? Does it allow us to partition the objects into buckets (e.g. one "bucket" for all objects that share a specific color)?

Equivalence Classes

Definition (equivalence class)

Let \sim be an equivalence relation over set S.

For any $x \in S$, the equivalence class of x is the set

$$[x]_{\sim} = \{ y \in \mathcal{S} \mid x \sim y \}.$$

Consider

$$\sim = \{(1,1), (1,4), (1,5), (4,1), (4,4), (4,5), (5,1), (5,4), (5,5), \\ (2,2), (2,3), (3,2), (3,3)\}$$
 over set $\{1,2,\ldots,5\}$.

$$[4]_{\sim} =$$

Equivalence Classes: Properties

Let \sim be an equivalence relation over set S and $E = \{[x]_{\sim} \mid x \in S\}$ the set of all equivalence classes.

- Every element of S is in some equivalence class in E.
- Every element of S is in at most one equivalence class in E.
 - → homework assignment
- ⇒ Equivalence relations induce partitions (not covered in this course).

B6.2 Order Relations

Order Relations

- We now consider other combinations of properties, that allow us to describe a consistent order of the objects.
- "Number x is not larger than number y." "Set S is a subset of set T." "Jerry runs at least as fast as Tom." "Pasta tastes better than Potatoes."

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N}_0 or \subseteq for sets.
- Are these relations
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Partial Orders – Definition

Definition (Partial order)

A binary relation \prec over set S is a partial order if \prec is reflexive, antisymmetric and transitive.

Which of these relations are partial orders?

- ▶ strict subset relation ⊂ for sets
- ▶ not-less-than relation ≥ over N₀
- $ightharpoonup R = \{(a, a), (a, b), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$

Least and Greatest Element

Definition (Least and greatest element)

Let \prec be a partial order over set S.

An element $x \in S$ is the least element of S if for all $y \in S$ it holds that $x \prec y$.

It is the greatest element of S if for all $y \in S$, $y \prec x$.

- Is there a least/greatest element? Which one?
 - ► $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$
 - relation < over N₀</p>
 - ▶ relation < over Z</p>
- Why can we say the least element instead of a least element?

Uniqueness of Least Element

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

Since x is a least element, $x \leq y$ is true.

Since y is a least element, $y \leq x$ is true.

As a partial order is antisymmetric, this implies that x = y. \oint

Analogously: If there is a greatest element then is unique.

Minimal and Maximal Flements

Definition (Minimal/Maximal element of a set)

Let \prec be a partial order over set S.

An element $x \in S$ is a minimal element of S

if there is no $y \in S$ with $y \prec x$ and $x \neq y$.

An element $x \in S$ is a maximal element of Sif there is no $y \in S$ with $x \prec y$ and $x \neq y$.

A set can have several minimal elements and no least element. Example?

Total Orders

- ightharpoonup Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both).
 - \blacktriangleright {1,2} $\not\subset$ {2,3} and {2,3} $\not\subset$ {1,2}
- ▶ Relation ≤ is a total order, relation ⊆ is not.

Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total (or connex) if for all $x, y \in S$ at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.

17 / 24

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.
- Example strict order relations are < over \mathbb{N}_0 or \subset for sets.
- Are these relations
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Strict Orders - Definition

Definition (Strict order)

A binary relation \prec over set S is a strict order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

- ▶ subset relation ⊆ for sets
- ▶ strict superset relation ⊃ for sets

Can a relation be both, a partial order and a strict order?

Strict Total Orders

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."
 - This definition of "tastes better than" is a strict order.
 - No ranking of pasta against rice or of pasta against bread.

Potato

Pasta

- ► Example 2: ⊂ relation for sets
- ▶ It doesn't work to simply require that the strict order is total. Why?

Bread

Rice

Strict Total Orders – Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

A strict total order completely ranks the elements of set S. Example: < relation over \mathbb{N}_0 gives the standard ordering $0, 1, 2, 3, \ldots$ of natural numbers.

Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)

Let \prec be a strict order over set S.

An element $x \in S$ is the least element of S

if for all $y \in S$ where $y \neq x$ it holds that $x \prec y$.

It is the greatest element of S if for all $y \in S$ where $y \neq x$, $y \prec x$.

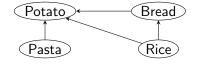
Element $x \in S$ is a minimal element of S if there is no $y \in S$ with $y \prec x$.

It is a maximal element of S if there is no $y \in S$ with $x \prec y$.

Special Elements – Example

Consider again the previous example:

```
S = \{ Pasta, Potato, Bread, Rice \}
\prec = \{(Pasta, Potato), (Bread, Potato), \}
       (Rice, Potato), (Rice, Bread)}
```



Is there a least and a greatest element? Which elements are maximal or minimal?

Summary

- ► An equivalence relation is reflexive, symmetric and transitive.
- A partial order $x \leq y$ is reflexive, antisymmetric and transitive.
 - If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \leq x$.
 - If x is a maximal element of set S then it is not smaller than any other element y: there is no $y \in S$ with $x \leq y$ and $x \neq y$.
 - ► A total order is a partial order without incomparable objects.
- A strict order is irreflexive, asymmetric and transitive.
 - Strict total orders and special elements are analogously defined as for partial orders but with a special treatment of equal elements.