Discrete Mathematics in Computer Science
B5. Relations

Malte Helmert, Gabriele Röger
University of Basel
October 16, 2023
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Discrete Mathematics in Computer Science October 16, 2023 - B5. Relations

B5.1 Relations

B5.2 Properties of Binary Relations

Definition (Relation)

Let S_{1}, \ldots, S_{n} be sets.
A relation over S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
The arity of R is n.

- A relation of arity n is a set of n-tuples.
- The set contains the tuples for which the informal property is true.

B5.2 Properties of Binary Relations

- $\subseteq=\left\{\left(S, S^{\prime}\right) \mid S\right.$ and S^{\prime} are sets and for every $x \in S$ it holds that $\left.x \in S^{\prime}\right\}$
- $\leq=\left\{(x, y) \mid x, y \in \mathbb{N}_{0}\right.$ and $x<y$ or $\left.x=y\right\}$
- $R=\{(x, y, z) \mid x, y, z \in \mathbb{Z}$ and $x+y=z\}$
- $R^{\prime}=\{($ Gabi Röger, Spiegelgasse $1,04.005)$,
(Malte Helmert, Spiegelgasse 1, 06.004),
(Salomé Eriksson, Spiegelgasse 5, 04.003),
(Claudia Grundke, Spiegelgasse 5, 04.001)\}
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 16, $2023 \quad 6 / 15$

B5. Relations

Properties of Binary Relations
Binary Relation

A binary relation is a relation of arity 2 :

Definition (binary relation)
A binary relation is a relation over two sets A and B.

- Instead of $(x, y) \in R$, we also write $x R y$, e.g.
$x \leq y$ instead of $(x, y) \in \leq$
- If the sets are equal, we say " R is a binary relation over A " instead of " R is a binary relation over A and A ".
- Such a relation over a set is also called
a homogeneous relation or an endorelation.

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive
if for all $a \in A$ it holds that $(a, a) \in R$.

Which of these relations are reflexive?

- $R=\{(a, a),(a, b),(a, c),(b, a),(b, c),(c, c)\}$ over $\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation < on natural numbers

A irreflexive relation never relates an object to itself.
Definition (irreflexive)
A binary relation R over set A is irreflexive
if for all $a \in A$ it holds that $(a, a) \notin R$.

Which of these relations are irreflexive?

- $R=\{(a, a),(a, b),(a, c),(b, a),(b, c),(c, c)\} \operatorname{over}\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation $<$ on natural numbers

Asymmetry and Antisymmetry
Definition (asymmetric and antisymmetric)
Let R be a binary relation over set A.
Relation R is asymmetric if
for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.
Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Which of these relations are asymmetric/antisymmetric?

- $R=\{(a, a),(a, b),(a, c),(b, a),(c, a),(c, c)\} \operatorname{over}\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation < on natural numbers

How do these properties relate to irreflexivity?

Definition
A binary relation R over set A is transitive
if it holds for all $a, b, c \in A$ that
if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

Which of these relations are transitive?

- $R=\{(a, a),(a, b),(a, c),(b, a),(c, a),(c, c)\}$ over $\{a, b, c\}$
- $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, c)\}$ over $\{a, b, c\}$
- equality relation $=$ on natural numbers
- less-than relation \leq on natural numbers
- strictly-less-than relation < on natural numbers
- A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
- A binary relation is a relation over two sets.
- A binary relation over set S is a relation $R \subseteq S \times S$ and also called a homogeneous relation.
- A binary relation R over A is
- reflexive if $(a, a) \in R$ for all $a \in A$,
- irreflexive if $(a, a) \notin R$ for all $a \in A$,
- symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$,
- asymmetric if for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$,
- antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$,
- transitive if for all $a, b, c \in A$ it holds that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$ (a, b) $\in R$ and $(b, c) \in R$ te $(a, c) \in R$.

B5. Relations
Special Classes of Relations

- Some important classes of relations are defined in terms of these properties.
- Equivalence relation: reflexive, symmetric, transitive
- Partial order: reflexive, antisymmetric, transitive
- Strict order: irreflexive, asymmetric, transitive
- ...
- We will consider these and other classes in detail.

