Discrete Mathematics in Computer Science

B4. Tuples \& Cartesian Product

Malte Helmert, Gabriele Röger
University of Basel
October 16, 2023

Tuples and the Cartesian Product

Sets vs. Tuples

■ A set is an unordered collection of distinct objects.

Sets vs. Tuples

- A set is an unordered collection of distinct objects.
- A tuple is an ordered sequence of objects.

Tuples

■ k-tuple: ordered sequence of k objects $\left(k \in \mathbb{N}_{0}\right)$
■ written $\left(o_{1}, \ldots, o_{k}\right)$ or $\left\langle o_{1}, \ldots, o_{k}\right\rangle$

- unlike sets, order matters $(\langle 1,2\rangle \neq\langle 2,1\rangle)$

■ objects may occur multiple times in a tuple

Tuples

■ k-tuple: ordered sequence of k objects $\left(k \in \mathbb{N}_{0}\right)$
■ written $\left(o_{1}, \ldots, o_{k}\right)$ or $\left\langle o_{1}, \ldots, o_{k}\right\rangle$

- unlike sets, order matters $(\langle 1,2\rangle \neq\langle 2,1\rangle)$

■ objects may occur multiple times in a tuple

- objects contained in tuples are called components
- terminology:
- $k=2$: (ordered) pair
- $k=3$: triple
- more rarely: quadruple, quintuple, sextuple, septuple, ...

■ if k is clear from context (or does not matter), often just called tuple

Equality of Tuples

Definition (Equality of Tuples)

Two n-tuples $t=\left\langle o_{1}, \ldots, o_{n}\right\rangle$ and $t^{\prime}=\left\langle o_{1}^{\prime}, \ldots, o_{n}^{\prime}\right\rangle$ are equal $\left(t=t^{\prime}\right)$ if for $i \in\{1, \ldots, n\}$ it holds that $o_{i}=o_{i}^{\prime}$.

Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S_{1}, \ldots, S_{n} be sets. The Cartesian product $S_{1} \times \cdots \times S_{n}$ is the following set of n-tuples:

$$
S_{1} \times \cdots \times S_{n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{1} \in S_{1}, x_{2} \in S_{2}, \ldots, x_{n} \in S_{n}\right\} .
$$

René Descartes: French mathematician and philosopher (1596-1650)

Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S_{1}, \ldots, S_{n} be sets. The Cartesian product $S_{1} \times \cdots \times S_{n}$ is the following set of n-tuples:

$$
S_{1} \times \cdots \times S_{n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{1} \in S_{1}, x_{2} \in S_{2}, \ldots, x_{n} \in S_{n}\right\} .
$$

René Descartes: French mathematician and philosopher (1596-1650)
Example: $A=\{a, b\}, B=\{1,2,3\}$
$A \times B=$

Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S_{1}, \ldots, S_{n} be sets. The Cartesian product $S_{1} \times \cdots \times S_{n}$ is the following set of n-tuples:

$$
S_{1} \times \cdots \times S_{n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{1} \in S_{1}, x_{2} \in S_{2}, \ldots, x_{n} \in S_{n}\right\} .
$$

The k-ary Cartesian power of a set S (with $k \in \mathbb{N}_{1}$) is the set $S^{k}=\left\{\left\langle o_{1}, \ldots, o_{k}\right\rangle \mid o_{i} \in S\right.$ for all $\left.i \in\{1, \ldots, k\}\right\}=\underbrace{S \times \cdots \times S}_{k \text { times }}$.

René Descartes: French mathematician and philosopher (1596-1650)
Example: $A=\{a, b\}, B=\{1,2,3\}$
$A^{2}=$

(Non-)properties of the Cartesian Product

The Cartesian product is

- not commutative, in most cases $A \times B \neq B \times A$.

■ not associative, in most cases $(A \times B) \times C \neq A \times(B \times C)$

(Non-)properties of the Cartesian Product

The Cartesian product is
■ not commutative, in most cases $A \times B \neq B \times A$.
■ not associative, in most cases $(A \times B) \times C \neq A \times(B \times C)$

Why? Exceptions?

Questions

Questions?

Summary

Summary

■ A k-tuple is an ordered sequence of k objects, called the components of the tuple.

- 2-tuples are also called pairs and 3-tuples triples.
- The Cartesian Product $S_{1} \times \cdots \times S_{n}$ of set S_{1}, \ldots, S_{n} is the set of all tuples $\left\langle o_{1}, \ldots, o_{n}\right\rangle$, where for all $i \in\{1, \ldots, n\}$ component o_{i} is an element of S_{i}.

