Discrete Mathematics in Computer Science

 B3. Cantor's TheoremMalte Helmert, Gabriele Röger

University of Basel

October 11, 2023

Cantor's Theorem

Countable Sets

We already know:

- Sets with the same cardinality as \mathbb{N}_{0} are called countably infinite.
- A countable set is finite or countably infinite.
- Every subset of a countable set is countable.

■ The union of countably many countable sets is countable.

Countable Sets

We already know:
■ Sets with the same cardinality as \mathbb{N}_{0} are called countably infinite.

- A countable set is finite or countably infinite.
- Every subset of a countable set is countable.
- The union of countably many countable sets is countable.

Open questions (to be resolved today):
■ Do all infinite sets have the same cardinality?

- Does the power set of an infinite set S have the same cardinality as S ?

Georg Cantor

- German mathematician (1845-1918)

■ Proved that the rational numbers are countable.

■ Proved that the real numbers are not countable.
■ Cantor's Theorem: For every set S it holds that $|S|<|\mathcal{P}(S)|$.

Our Plan

- Understand Cantor's theorem

■ Understand an important theoretical implication for computer science

Cantor's Diagonal Argument Illustrated on a Finite Set

$$
S=\{a, b, c\} .
$$

Consider an arbitrary function from S to $\mathcal{P}(S)$. For example:

	a	b	c	
a	1	0	1	a mapped to $\{a, c\}$
b	1	1	0	b mapped to $\{a, b\}$
c	0	1	0	c mapped to $\{b\}$

Cantor's Diagonal Argument Illustrated on a Finite Set

$$
S=\{a, b, c\} .
$$

Consider an arbitrary function from S to $\mathcal{P}(S)$. For example:

	a	b	c	
a	1	0	1	a mapped to $\{a, c\}$
b	1	1	0	b mapped to $\{a, b\}$
c	0	1	0	c mapped to $\{b\}$

We can identify an "unused" element of $\mathcal{P}(S)$.

Cantor's Diagonal Argument Illustrated on a Finite Set

$$
S=\{a, b, c\} .
$$

Consider an arbitrary function from S to $\mathcal{P}(S)$. For example:

	a	b	c	
a	1	0	1	a mapped to $\{a, c\}$
b	1	1	0	b mapped to $\{a, b\}$
c	0	1	0	c mapped to $\{b\}$
	0	0	1	nothing was mapped to $\{c\}$.

We can identify an "unused" element of $\mathcal{P}(S)$. Complement the entries on the main diagonal.

Cantor's Diagonal Argument Illustrated on a Finite Set

$$
S=\{a, b, c\} .
$$

Consider an arbitrary function from S to $\mathcal{P}(S)$. For example:

	a	b	c	
a	1	0	1	a mapped to $\{a, c\}$
b	1	1	0	b mapped to $\{a, b\}$
c	0	1	0	c mapped to $\{b\}$
	0	0	1	nothing was mapped to $\{c\}$.

We can identify an "unused" element of $\mathcal{P}(S)$.
Complement the entries on the main diagonal.
Works with every function from S to $\mathcal{P}(S)$.
\rightarrow there cannot be a surjective function from S to $\mathcal{P}(S)$.
\rightarrow there cannot be a bijection from S to $\mathcal{P}(S)$.

Cantor's Diagonal Argument on a Countably Infinite Set

$$
S=\mathbb{N}_{0} .
$$

Consider an arbitrary function from \mathbb{N}_{0} to $\mathcal{P}\left(\mathbb{N}_{0}\right)$. For example:

	0	1	2	3	4	\ldots
0	1	0	1	0	1	\ldots
1	1	1	0	1	0	\ldots
2	0	1	0	1	0	\ldots
3	1	1	0	0	0	\ldots
4	1	1	0	1	1	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Cantor's Diagonal Argument on a Countably Infinite Set

$$
S=\mathbb{N}_{0}
$$

Consider an arbitrary function from \mathbb{N}_{0} to $\mathcal{P}\left(\mathbb{N}_{0}\right)$. For example:

	0	1	2	3	4	\ldots
0	1	0	1	0	1	\ldots
1	1	1	0	1	0	\ldots
2	0	1	0	1	0	\ldots
3	1	1	0	0	0	\ldots
4	1	1	0	1	1	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots
	0	0	1	1	0	\ldots

Complementing the entries on the main diagonal again results in an "unused" element of $\mathcal{P}\left(\mathbb{N}_{0}\right)$.

Cantor's Theorem

Theorem (Cantor's Theorem)
 For every set S it holds that $|S|<|\mathcal{P}(S)|$.

Cantor's Theorem

Theorem (Cantor's Theorem)
For every set S it holds that $|S|<|\mathcal{P}(S)|$.

Proof.

Consider an arbitrary set S. We need to show that
(1) There is an injective function from S to $\mathcal{P}(S)$.
(2) There is no bijection from S to $\mathcal{P}(S)$.

Cantor's Theorem

Theorem (Cantor's Theorem)

For every set S it holds that $|S|<|\mathcal{P}(S)|$.

Proof.

Consider an arbitrary set S. We need to show that
(1) There is an injective function from S to $\mathcal{P}(S)$.
(2) There is no bijection from S to $\mathcal{P}(S)$.

For 1 , consider function $f: S \rightarrow \mathcal{P}(S)$ with $f(x)=\{x\}$. It maps distinct elements of S to distinct elements of $\mathcal{P}(S)$.

Cantor's Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to $\mathcal{P}(S)$.

Cantor's Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to $\mathcal{P}(S)$.
Consider $M=\{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$.

Cantor's Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to $\mathcal{P}(S)$.
Consider $M=\{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$. Since f is bijective, it is surjective and there is an $x \in S$ with $f(x)=M$. Consider this x in a case distinction:

Cantor's Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to $\mathcal{P}(S)$.
Consider $M=\{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$. Since f is bijective, it is surjective and there is an $x \in S$ with $f(x)=M$. Consider this x in a case distinction:
If $x \in M$ then $x \notin f(x)$ by the definition of M. Since $f(x)=M$ this implies $x \notin M$. \rightsquigarrow contradiction

Cantor's Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to $\mathcal{P}(S)$.
Consider $M=\{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$.
Since f is bijective, it is surjective and there is an $x \in S$ with $f(x)=M$. Consider this x in a case distinction:
If $x \in M$ then $x \notin f(x)$ by the definition of M. Since $f(x)=M$ this implies $x \notin M$. \rightsquigarrow contradiction
If $x \notin M$, we conclude from $f(x)=M$ that $x \notin f(x)$. Using the definition of M we get that $x \in M . \rightsquigarrow$ contradiction

Cantor's Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to $\mathcal{P}(S)$.
Consider $M=\{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$.
Since f is bijective, it is surjective and there is an $x \in S$ with $f(x)=M$. Consider this x in a case distinction:
If $x \in M$ then $x \notin f(x)$ by the definition of M. Since $f(x)=M$ this implies $x \notin M$. \rightsquigarrow contradiction
If $x \notin M$, we conclude from $f(x)=M$ that $x \notin f(x)$. Using the definition of M we get that $x \in M . \rightsquigarrow$ contradiction
Since all cases lead to a contradiction, there is no such x and thus f is not surjective and consequently not a bijection.

Cantor's Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to $\mathcal{P}(S)$.
Consider $M=\{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$.
Since f is bijective, it is surjective and there is an $x \in S$ with $f(x)=M$. Consider this x in a case distinction:
If $x \in M$ then $x \notin f(x)$ by the definition of M. Since $f(x)=M$ this implies $x \notin M$. \rightsquigarrow contradiction
If $x \notin M$, we conclude from $f(x)=M$ that $x \notin f(x)$. Using the definition of M we get that $x \in M . \rightsquigarrow$ contradiction
Since all cases lead to a contradiction, there is no such x and thus f is not surjective and consequently not a bijection.
The assumption was false and we conclude that there is no bijection from S to $\mathcal{P}(S)$.

Consequences of Cantor's Theorem

Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:
■ $\left.\left.\left|\mathbb{N}_{0}\right|<\mid \mathcal{P}\left(\mathbb{N}_{0}\right)\right)|<| \mathcal{P}\left(\mathcal{P}\left(\mathbb{N}_{0}\right)\right)\right) \mid<\ldots$

- $\left|\mathbb{N}_{0}\right|=\aleph_{0}=\beth_{0}$
- $\left|\mathcal{P}\left(\mathbb{N}_{0}\right)\right|=\beth_{1}(=|\mathbb{R}|)$
- $\left|\mathcal{P}\left(\mathcal{P}\left(\mathbb{N}_{0}\right)\right)\right|=\beth_{2}$

Existence of Unsolvable Problems

There are more problems in computer science than there are programs to solve them.

Existence of Unsolvable Problems

There are more problems in computer science than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Existence of Unsolvable Problems

There are more problems in computer science than there are programs to solve them.

There are problems that cannot be solved by a computer program!
Why can we say so?

Decision Problems

"Intuitive Definition:" Decision Problem

A decision problem is a Yes-No question of the form
"Does the given input have a certain property?"
■ "Does the given binary tree have more than three leaves?"
■ "Is the given integer odd?"
■ "Given a train schedule, is there a connection from Basel to Belinzona that takes at most 2.5 hours?"

Decision Problems

"Intuitive Definition:" Decision Problem

A decision problem is a Yes-No question of the form
"Does the given input have a certain property?"

■ "Does the given binary tree have more than three leaves?"

- "Is the given integer odd?"

■ "Given a train schedule, is there a connection from Basel to Belinzona that takes at most 2.5 hours?"

- Input can be encoded as some finite string.
- Problem can also be represented as the (possibly infinite) set of all input strings where the answer is "yes".

Decision Problems

"Intuitive Definition:" Decision Problem

A decision problem is a Yes-No question of the form
"Does the given input have a certain property?"
■ "Does the given binary tree have more than three leaves?"
■ "Is the given integer odd?"
■ "Given a train schedule, is there a connection from Basel to Belinzona that takes at most 2.5 hours?"

- Input can be encoded as some finite string.
- Problem can also be represented as the (possibly infinite) set of all input strings where the answer is "yes".
- A computer program solves a decision problem if it terminates on every input and returns the correct answer.

More Problems than Programs I

- A computer program is given by a finite string.

■ A decision problem corresponds to a set of strings.

More Problems than Programs II

- Consider an arbitrary finite set of symbols (an alphabet) Σ.
- You can think of $\Sigma=\{0,1\}$
as internally computers operate on binary representation.

More Problems than Programs II

■ Consider an arbitrary finite set of symbols (an alphabet) Σ.

- You can think of $\Sigma=\{0,1\}$
as internally computers operate on binary representation.
■ Let S be the set of all finite strings made from symbols in Σ.

More Problems than Programs II

■ Consider an arbitrary finite set of symbols (an alphabet) Σ.

- You can think of $\Sigma=\{0,1\}$ as internally computers operate on binary representation.
■ Let S be the set of all finite strings made from symbols in Σ.
- There are at most $|S|$ computer programs with this alphabet.

■ There are at least $|\mathcal{P}(S)|$ problems with this alphabet.

- every subset of S corresponds to a separate decision problem

More Problems than Programs II

■ Consider an arbitrary finite set of symbols (an alphabet) Σ.

- You can think of $\Sigma=\{0,1\}$ as internally computers operate on binary representation.
■ Let S be the set of all finite strings made from symbols in Σ.
- There are at most $|S|$ computer programs with this alphabet.
- There are at least $|\mathcal{P}(S)|$ problems with this alphabet.
- every subset of S corresponds to a separate decision problem

■ By Cantor's theorem $|S|<|\mathcal{P}(S)|$, so there are more problems than programs.

Sets: Summary

Summary

- A set is an unordered collection of distinct objects.

Summary

- A set is an unordered collection of distinct objects.

■ Set operations: union, intersection, set difference, complement

Summary

- A set is an unordered collection of distinct objects.

■ Set operations: union, intersection, set difference, complement

- Commutativity, associativity and distributivity of union and intersection

Summary

- A set is an unordered collection of distinct objects.

■ Set operations: union, intersection, set difference, complement

- Commutativity, associativity and distributivity of union and intersection
- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Summary

- A set is an unordered collection of distinct objects.

■ Set operations: union, intersection, set difference, complement

- Commutativity, associativity and distributivity of union and intersection
- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
- The cardinality measures the "size" of a set.

Summary

- A set is an unordered collection of distinct objects.

■ Set operations: union, intersection, set difference, complement

```
A\bigcircB
```


- Commutativity, associativity and distributivity of union and intersection
- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
- The cardinality measures the "size" of a set.
- For finite sets, the cardinality equals the number of elements.

Summary

- A set is an unordered collection of distinct objects.

■ Set operations: union, intersection, set difference, complement

$$
A \bigcirc B
$$

■ Commutativity, associativity and distributivity of union and intersection

- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

■ The cardinality measures the "size" of a set.

- For finite sets, the cardinality equals the number of elements.
- All sets with the same cardinality as \mathbb{N}_{0} are countably infinite.

Summary

- A set is an unordered collection of distinct objects.

■ Set operations: union, intersection, set difference, complement

$$
A \bigcirc B
$$

- Commutativity, associativity and distributivity of union and intersection
- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
- The cardinality measures the "size" of a set.
- For finite sets, the cardinality equals the number of elements.
- All sets with the same cardinality as \mathbb{N}_{0} are countably infinite.

■ All sets with cardinality $\leq\left|\mathbb{N}_{0}\right|$ are countable.

Summary

- A set is an unordered collection of distinct objects.

■ Set operations: union, intersection, set difference, complement

$$
A \bigcirc B
$$

- Commutativity, associativity and distributivity of union and intersection
- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
- The cardinality measures the "size" of a set.

■ For finite sets, the cardinality equals the number of elements.

- All sets with the same cardinality as \mathbb{N}_{0} are countably infinite.

■ All sets with cardinality $\leq\left|\mathbb{N}_{0}\right|$ are countable.
■ The power set $\mathcal{P}(S)$ of set S is the set of all subsets of S.

■ A set is an unordered collection of distinct objects.

- Set operations: union, intersection, set difference, complement

$$
A \bigcirc B
$$

- Commutativity, associativity and distributivity of union and intersection
- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
- The cardinality measures the "size" of a set.
- For finite sets, the cardinality equals the number of elements.
- All sets with the same cardinality as \mathbb{N}_{0} are countably infinite.

■ All sets with cardinality $\leq\left|\mathbb{N}_{0}\right|$ are countable.
■ The power set $\mathcal{P}(S)$ of set S is the set of all subsets of S.

- For finite sets S it holds that $|\mathcal{P}(S)|=2^{|S|}$.

■ A set is an unordered collection of distinct objects.

- Set operations: union, intersection, set difference, complement

$$
A \bigcirc B
$$

■ Commutativity, associativity and distributivity of union and intersection

- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
- The cardinality measures the "size" of a set.

■ For finite sets, the cardinality equals the number of elements.

- All sets with the same cardinality as \mathbb{N}_{0} are countably infinite.
- All sets with cardinality $\leq\left|\mathbb{N}_{0}\right|$ are countable.

■ The power set $\mathcal{P}(S)$ of set S is the set of all subsets of S.
■ For finite sets S it holds that $|\mathcal{P}(S)|=2^{|S|}$.
■ For all sets S it holds that $|S|<|\mathcal{P}(S)|$.

