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Countable Sets

We already know:

▶ Sets with the same cardinality as N0 are called countably
infinite.

▶ A countable set is finite or countably infinite.

▶ Every subset of a countable set is countable.

▶ The union of countably many countable sets is countable.

Open questions (to be resolved today):

▶ Do all infinite sets have the same cardinality?

▶ Does the power set of an infinite set S
have the same cardinality as S?
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Georg Cantor

▶ German mathematician (1845–1918)

▶ Proved that the rational numbers are
countable.

▶ Proved that the real numbers are not
countable.

▶ Cantor’s Theorem: For every set S
it holds that |S | < |P(S)|.
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Our Plan

▶ Understand Cantor’s theorem

▶ Understand an important theoretical implication
for computer science
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Cantor’s Diagonal Argument Illustrated on a Finite Set

S = {a, b, c}.

Consider an arbitrary function from S to P(S).
For example:

a b c

a 1 0 1 a mapped to {a, c}
b 1 1 0 b mapped to {a, b}
c 0 1 0 c mapped to {b}

0 0 1 nothing was mapped to {c}.

We can identify an “unused” element of P(S).
Complement the entries on the main diagonal.

Works with every function from S to P(S).
→ there cannot be a surjective function from S to P(S).
→ there cannot be a bijection from S to P(S).
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Cantor’s Diagonal Argument on a Countably Infinite Set

S = N0.

Consider an arbitrary function from N0 to P(N0).
For example:

0 1 2 3 4 . . .
0 1 0 1 0 1 . . .
1 1 1 0 1 0 . . .
2 0 1 0 1 0 . . .
3 1 1 0 0 0 . . .
4 1 1 0 1 1 . . .
...

...
...

...
...

...
. . .

0 0 1 1 0 . . .

Complementing the entries on the main diagonal
again results in an “unused” element of P(N0).
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Cantor’s Theorem

Theorem (Cantor’s Theorem)

For every set S it holds that |S | < |P(S)|.

Proof.
Consider an arbitrary set S . We need to show that

1 There is an injective function from S to P(S).

2 There is no bijection from S to P(S).

For 1, consider function f : S → P(S) with f (x) = {x}.
It maps distinct elements of S to distinct elements of P(S). . . .

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science October 11, 2023 9 / 18

B3. Cantor’s Theorem Cantor’s Theorem

Cantor’s Theorem

Proof (continued).

We show 2 by contradiction.
Assume there is a bijection f from S to P(S).

Consider M = {x | x ∈ S , x /∈ f (x)} and note that M ∈ P(S).

Since f is bijective, it is surjective and there is an x ∈ S with
f (x) = M. Consider this x in a case distinction:

If x ∈ M then x /∈ f (x) by the definition of M. Since f (x) = M
this implies x /∈ M. ⇝ contradiction

If x /∈ M, we conclude from f (x) = M that x /∈ f (x). Using the
definition of M we get that x ∈ M. ⇝ contradiction

Since all cases lead to a contradiction, there is no such x and thus
f is not surjective and consequently not a bijection.

The assumption was false and we conclude that there is no
bijection from S to P(S).
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B3.2 Consequences of Cantor’s
Theorem
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Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:

▶ |N0| < |P(N0))| < |P(P(N0)))| < . . .

▶ |N0| = ℵ0 = ℶ0

▶ |P(N0)| = ℶ1(= |R|)
▶ |P(P(N0))| = ℶ2

▶ . . .
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Existence of Unsolvable Problems

There are more problems in computer science
than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Why can we say so?
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Decision Problems

“Intuitive Definition:” Decision Problem
A decision problem is a Yes-No question of the form
“Does the given input have a certain property?”

▶ “Does the given binary tree have more than three leaves?”

▶ “Is the given integer odd?”

▶ “Given a train schedule, is there a connection from Basel to
Belinzona that takes at most 2.5 hours?”

▶ Input can be encoded as some finite string.

▶ Problem can also be represented as the (possibly infinite) set
of all input strings where the answer is “yes”.

▶ A computer program solves a decision problem if it terminates
on every input and returns the correct answer.
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More Problems than Programs I

▶ A computer program is given by a finite string.

▶ A decision problem corresponds to a set of strings.
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More Problems than Programs II

▶ Consider an arbitrary finite set of symbols (an alphabet) Σ.

▶ You can think of Σ = {0, 1}
as internally computers operate on binary representation.

▶ Let S be the set of all finite strings made from symbols in Σ.

▶ There are at most |S | computer programs with this alphabet.
▶ There are at least |P(S)| problems with this alphabet.

▶ every subset of S corresponds to a separate decision problem

▶ By Cantor’s theorem |S | < |P(S)|,
so there are more problems than programs.
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B3.3 Sets: Summary
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Summary

▶ A set is an unordered collection of distinct objects.

▶ Set operations: union, intersection, set difference, complement

A B A B A B A

▶ Commutativity, associativity and distributivity
of union and intersection

▶ De Morgan’s law: A ∪ B = A ∩ B and A ∩ B = A ∪ B.

▶ The cardinality measures the “size” of a set.
▶ For finite sets, the cardinality equals the number of elements.
▶ All sets with the same cardinality as N0 are countably infinite.
▶ All sets with cardinality ≤ |N0| are countable.

▶ The power set P(S) of set S is the set of all subsets of S .
▶ For finite sets S it holds that |P(S)| = 2|S|.
▶ For all sets S it holds that |S | < |P(S)|.
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