

B3.1 Cantor's Theorem

Discrete Mathematics in Computer Science	
October 11, 2023 — B3. Cantor's Theorem	

B3.1 Cantor's Theorem

B3.2 Consequences of Cantor's Theorem

B3.3 Sets: Summary

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 11, 2023 2 / 18

B3. Cantor's Theorem Countable Sets We already know: Sets with the same cardinality as N₀ are called countably infinite. A countable set is finite or countably infinite. Every subset of a countable set is countable. The union of countably many countable sets is countable. Open questions (to be resolved today): Do all infinite sets have the same cardinality? Does the power set of an infinite set S have the same cardinality as S?

Cantor's Theorem

Cantor's Theorem

Theorem (Cantor's Theorem) For every set *S* it holds that $|S| < |\mathcal{P}(S)|$.

Proof.

Consider an arbitrary set S. We need to show that

- **①** There is an injective function from S to $\mathcal{P}(S)$.
- **2** There is no bijection from *S* to $\mathcal{P}(S)$.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

For 1, consider function $f : S \to \mathcal{P}(S)$ with $f(x) = \{x\}$. It maps distinct elements of S to distinct elements of $\mathcal{P}(S)$

B3. Cantor's Theorem

Consequences of Cantor's Theorem

October 11, 2023

9 / 18

B3.2 Consequences of Cantor's Theorem

B3. Cantor's Theorem

Cantor's Theorem

Proof (continued).

We show 2 by contradiction. Assume there is a bijection f from S to $\mathcal{P}(S)$.

Consider $M = \{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$. Since f is bijective, it is surjective and there is an $x \in S$ with f(x) = M. Consider this x in a case distinction:

If $x \in M$ then $x \notin f(x)$ by the definition of M. Since f(x) = M this implies $x \notin M$. \rightsquigarrow contradiction

If $x \notin M$, we conclude from f(x) = M that $x \notin f(x)$. Using the definition of M we get that $x \in M$. \rightsquigarrow contradiction

Since all cases lead to a contradiction, there is no such x and thus f is not surjective and consequently not a bijection.

The assumption was false and we conclude that there is no bijection from S to $\mathcal{P}(S)$.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 11, 2023 10 / 18

Cantor's Theorem

Existence of Unsolvable Problems

There are more problems in computer science than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Why can we say so?

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

B3. Cantor's Theorem

More Problems than Programs I

- A computer program is given by a finite string.
- A decision problem corresponds to a set of strings.

B3. Cantor's Theorem

Consequences of Cantor's Theorem

Decision Problems

"Intuitive Definition:" Decision Problem A decision problem is a Yes-No question of the form "Does the given input have a certain property?"

- "Does the given binary tree have more than three leaves?"
- "Is the given integer odd?"
- "Given a train schedule, is there a connection from Basel to Belinzona that takes at most 2.5 hours?"
- Input can be encoded as some finite string.
- Problem can also be represented as the (possibly infinite) set of all input strings where the answer is "yes".
- A computer program solves a decision problem if it terminates on every input and returns the correct answer.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 11, 2023 14 / 18

Consequences of Cantor's Theorem

October 11, 2023

Consequences of Cantor's Theorem

13 / 18

