Discrete Mathematics in Computer Science
B3. Cantor's Theorem

Malte Helmert, Gabriele Röger
University of Basel
October 11, 2023

Melmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Discrete Mathematics in Computer Science
October 11, 2023 - B3. Cantor's Theorem

B3.1 Cantor's Theorem

B3.2 Consequences of Cantor's Theorem

B3.3 Sets: Summary

- German mathematician (1845-1918)
- Proved that the rational numbers are countable.
- Proved that the real numbers are not countable.
- Cantor's Theorem: For every set S it holds that $|S|<|\mathcal{P}(S)|$.
- Understand Cantor's theorem
- Understand an important theoretical implication for computer science

Cantor's Diagonal Argument Illustrated on a Finite Set
Cantor's Diagonal Argument on a Countably Infinite Set

$$
S=\{a, b, c\} .
$$

Consider an arbitrary function from S to $\mathcal{P}(S)$.
For example:
$S=\mathbb{N}_{0}$.
Consider an arbitrary function from \mathbb{N}_{0} to $\mathcal{P}\left(\mathbb{N}_{0}\right)$.
For example:

	0	1	2	3	4	\ldots
0	1	0	1	0	1	\ldots
1	1	1	0	1	0	\ldots
2	0	1	0	1	0	\ldots
3	1	1	0	0	0	\ldots
4	1	1	0	1	1	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots
	0	0	1	1	0	\ldots

Complementing the entries on the main diagonal again results in an "unused" element of $\mathcal{P}\left(\mathbb{N}_{0}\right)$.

Theorem (Cantor's Theorem)
For every set S it holds that $|S|<|\mathcal{P}(S)|$.

Proof.
Consider an arbitrary set S. We need to show that
We show 2 by contradiction.
Assume there is a bijection f from S to $\mathcal{P}(S)$
Consider $M=\{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$.
Since f is bijective, it is surjective and there is an $x \in S$ with
$f(x)=M$. Consider this x in a case distinction:
If $x \in M$ then $x \notin f(x)$ by the definition of M. Since $f(x)=M$ this implies $x \notin M$. \rightsquigarrow contradiction
If $x \notin M$, we conclude from $f(x)=M$ that $x \notin f(x)$. Using the definition of M we get that $x \in M . \rightsquigarrow$ contradiction

Since all cases lead to a contradiction, there is no such x and thus f is not surjective and consequently not a bijection.
The assumption was false and we conclude that there is no bijection from S to $\mathcal{P}(S)$.

[^0]Consequences of Cantor's Theorem
Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:

- $\left.\left.\left|\mathbb{N}_{0}\right|<\mid \mathcal{P}\left(\mathbb{N}_{0}\right)\right)|<| \mathcal{P}\left(\mathcal{P}\left(\mathbb{N}_{0}\right)\right)\right) \mid<\ldots$
$-\left|\mathbb{N}_{0}\right|=\aleph_{0}=\beth_{0}$
- $\left|\mathcal{P}\left(\mathbb{N}_{0}\right)\right|=\beth_{1}(=|\mathbb{R}|)$
- $\left|\mathcal{P}\left(\mathcal{P}\left(\mathbb{N}_{0}\right)\right)\right|=\beth_{2}$
- ...

33. Cantor's Theorem

Existence of Unsolvable Problems

There are more problems in computer science than there are programs to solve them.

There are problems that cannot be solved by a computer program! Why can we say so?
"Intuitive Definition:" Decision Problem A decision problem is a Yes-No question of the form
"Does the given input have a certain property?"

- "Does the given binary tree have more than three leaves?"
- "Is the given integer odd?"
- "Given a train schedule, is there a connection from Basel to Belinzona that takes at most 2.5 hours?"
- Input can be encoded as some finite string.
- Problem can also be represented as the (possibly infinite) set of all input strings where the answer is "yes".
- A computer program solves a decision problem if it terminates on every input and returns the correct answer.
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 11, 2023

More Problems than Programs II

- Consider an arbitrary finite set of symbols (an alphabet) Σ.
- You can think of $\Sigma=\{0,1\}$ as internally computers operate on binary representation.
- Let S be the set of all finite strings made from symbols in Σ.
- There are at most $|S|$ computer programs with this alphabet.
- There are at least $|\mathcal{P}(S)|$ problems with this alphabet.
- every subset of S corresponds to a separate decision problem
- By Cantor's theorem $|S|<|\mathcal{P}(S)|$,
so there are more problems than programs.

- A set is an unordered collection of distinct objects.
- Set operations: union, intersection, set difference, complement
- Commutativity, associativity and distributivity of union and intersection
- De Morgan's law: $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
- The cardinality measures the "size" of a set.
- For finite sets, the cardinality equals the number of elements.
- All sets with the same cardinality as \mathbb{N}_{0} are countably infinite.
- All sets with cardinality $\leq\left|\mathbb{N}_{0}\right|$ are countable.
- The power set $\mathcal{P}(S)$ of set S is the set of all subsets of S.
- For finite sets S it holds that $|\mathcal{P}(S)|=2^{|S|}$.
- For all sets S it holds that $|S|<|\mathcal{P}(S)|$.

[^0]: B3. Cantor's Theorem

 ## B3.2 Consequences of Cantor's Theorem

