Discrete Mathematics in Computer Science

 B2. Sets: CountabilityMalte Helmert, Gabriele Röger

University of Basel

October 4/9, 2023

Discrete Mathematics in Computer Science

October 4/9, 2023 - B2. Sets: Countability

B2.1 Comparing Cardinality

B2.2 Hilbert's Hotel

B2.3 Countable Sets

B2.1 Comparing Cardinality

Finite Sets Revisited

We already know:

- The cardinality $|S|$ measures the size of set S.
- A set is finite if it has a finite number of elements.
- The cardinality of a finite set is the number of elements it contains.

A set is infinite if it has an infinite number of elements.
Do all infinite sets have the same cardinality?

Comparing the Cardinality of Sets

- Consider $A=\{1,2\}$ and $B=\{\mathrm{dog}$, cat, mouse $\}$.
- We can map distinct elements of A to distinct elements of B :

$$
\begin{aligned}
& 1 \mapsto \operatorname{dog} \\
& 2 \mapsto \text { cat }
\end{aligned}
$$

- We call this an injective function from A to B :
- every element of A is mapped to an element of B;
different elements of A are mapped to different elements of B.

Comparing Cardinality

Definition (cardinality not larger)
Set A has cardinality less than or equal to the cardinality of set B $(|A| \leq|B|)$, if there is an injective function from A to B.

Comparing the Cardinality of Sets

- $A=\{1,2,3\}$ and $B=\{$ dog, cat, mouse $\}$ have cardinality 3 .
- We can pair their elements:

$$
\begin{aligned}
& x \quad f(x) \\
& 1 \leftrightarrow \text { dog } \\
& 2 \leftrightarrow \text { cat } \\
& 3 \leftrightarrow \text { mouse }
\end{aligned}
$$

- We call such a mapping a bijection from A to B.
- Each element of A is paired with exactly one element of set B.
- Each element of B is paired with exactly one element of A.
- Mathematically:
- f is a function from A to B.
- f is injective: if $x \neq y$ then $f(x) \neq f(y)$.
- f is surjective: for all $y \in B$ there is an $x \in A$ with $f(x)=y$.
- If there is a bijection from A to B there is one from B to A.

Equinumerous Sets

We use the existence of a bijection also as criterion for infinite sets:
Definition (equinumerous sets)
Two sets A and B have the same cardinality $(|A|=|B|)$
if there exists a bijection from A to B.
Such sets are called equinumerous.

Definition (strictly smaller cardinality)
Set A has cardinality strictly less than the cardinality of set B $(|A|<|B|)$, if $|A| \leq|B|$ and $|A| \neq|B|$.

Consider set A and object $e \notin A$. Is $|A|<|A \cup\{e\}|$?

B2.2 Hilbert's Hotel

Hilbert's Hotel

Our intuition for finite sets does not always work for infinite sets.

- If in a hotel all rooms are occupied then it cannot accomodate additional guests.
- But Hilbert's Grand Hotel has infinitely many rooms.

- All these rooms are occupied.

One More Guest Arrives

- Every guest moves from her current room n to room $n+1$.
- Room 1 is then free.
- The new guest gets room 1 .

Four More Guests Arrive

- Every guest moves from her current room n to room $n+4$.
- Rooms 1 to 4 are no longer occupied and can be used for the new guests.
\rightarrow Works for any finite number of additional guests.

An Infinite Number of Guests Arrives

- Every guest moves from her current room n to room $2 n$.
- The infinitely many rooms with odd numbers are now available.
- The new guests fit into these rooms.

Can we Go further?

What if ...

- infinitely many coaches, each with an infinite number of guests
- infinitely many ferries, each with an infinite number of coaches, each with infinitely many guests
. . . arrive?

There are strategies for all these situations as long as with "infinite" we mean "countably infinite" and there is a finite number of layers.

B2.3 Countable Sets

Comparing Cardinality

- Two sets A and B have the same cardinality if their elements can be paired (i.e. there is a bijection from A to B).
- Set A has a strictly smaller cardinality than set B if
- we can map distinct elements of A to distinct elements of B (i.e. there is an injective function from A to B), and
- $|A| \neq|B|$.
- This clearly makes sense for finite sets.
- What about infinite sets?

Do they even have different cardinalities?

Countable and Countably Infinite Sets

Definition (countably infinite and countable)
A set A is countably infinite if $|A|=\left|\mathbb{N}_{0}\right|$.
A set A is countable if $|A| \leq\left|\mathbb{N}_{0}\right|$.
A set is countable if it is finite or countably infinite.

- We can count the elements of a countable set one at a time.
- The objects are "discrete" (in contrast to "continuous").
- Discrete mathematics deals with all kinds of countable sets.

Set of Even Numbers

- even $=\left\{n \mid n \in \mathbb{N}_{0}\right.$ and n is even $\}$
- Obviously: even $\subset \mathbb{N}_{0}$
- Intuitively, there are twice as many natural numbers as even numbers - no?
- Is \mid even $\left|<\left|\mathbb{N}_{0}\right|\right.$?

Set of Even Numbers

Theorem (set of even numbers is countably infinite)
The set of all even natural numbers is countably infinite,
i. e. $\mid\left\{n \mid n \in \mathbb{N}_{0}\right.$ and n is even $\}\left|=\left|\mathbb{N}_{0}\right|\right.$.

Proof Sketch.
We can pair every natural number n with the even number $2 n$.

Set of Perfect Squares

Theorem (set of perfect squares is countably infininite)
The set of all perfect squares is countably infinite,
i.e. $\left|\left\{n^{2} \mid n \in \mathbb{N}_{0}\right\}\right|=\left|\mathbb{N}_{0}\right|$.

Proof Sketch.
We can pair every natural number n with square number n^{2}.

Subsets of Countable Sets are Countable

In general:
Theorem (subsets of countable sets are countable)
Let A be a countable set. Every set B with $B \subseteq A$ is countable.
Proof.
Since A is countable there is an injective function f from A to \mathbb{N}_{0}. The restriction of f to B is an injective function from B to \mathbb{N}_{0}.

Set of the Positive Rationals

Theorem (set of positive rationals is countably infininite)
Set $\mathbb{Q}_{+}=\{n \mid n \in \mathbb{Q}$ and $n>0\}=\left\{p / q \mid p, q \in \mathbb{N}_{1}\right\}$ is countably infinite.

Proof idea.

Union of Two Countable Sets is Countable

Theorem (union of two countable sets countable) Let A and B be countable sets. Then $A \cup B$ is countable.

Proof sketch.

As A and B are countable there is an injective function f_{A} from A to \mathbb{N}_{0}, analogously f_{B} from B to \mathbb{N}_{0}.
We define function $f_{A \cup B}$ from $A \cup B$ to \mathbb{N}_{0} as

$$
f_{A \cup B}(e)= \begin{cases}2 f_{A}(e) & \text { if } e \in A \\ 2 f_{B}(e)+1 & \text { otherwise }\end{cases}
$$

This $f_{A \cup B}$ is an injective function from $A \cup B$ to \mathbb{N}_{0}.

Integers and Rationals

Theorem (sets of integers and rationals are countably infinite) The sets \mathbb{Z} and \mathbb{Q} are countably infinite.

Without proof (\rightsquigarrow exercises)

Union of More than Two Sets

Definition (arbitrary unions)
Let M be a set of sets. The union $\bigcup_{S \in M} S$ is the set with

$$
x \in \bigcup_{S \in M} S \text { iff exists } S \in M \text { with } x \in S
$$

Countable Union of Countable Sets

Theorem
Let M be a countable set of countable sets.
Then $\bigcup_{S \in M} S$ is countable.
We proof this formally after we have studied functions.

Set of all Binary Trees is Countable

Theorem (set of all binary trees is countable)
The set $B=\{b \mid b$ is a binary tree $\}$ is countable.

Proof.

For $n \in \mathbb{N}_{0}$ the set B_{n} of all binary trees with n leaves is finite.
With $M=\left\{B_{i} \mid i \in \mathbb{N}_{0}\right\}$ the set of all binary trees is
$B=\bigcup_{B^{\prime} \in M} B^{\prime}$.
Since M is a countable set of countable sets, B is countable.

And Now?

We have seen several countably infinite sets.
What about our original questions?

- Do all infinite sets have the same cardinality?
- Are they all countably infinite?

Summary

- Set A has cardinality less than or equal the cardinality of set $B(|A| \leq|B|)$, if there is an injective function from A to B.
- Sets A and B have the same cardinality $(|A|=|B|)$ if there exists a bijection from A to B.
- Our intuition for finite sets does not always work for infinite sets.
- A set is countable if it has at most cardinality $\left|\mathbb{N}_{0}\right|$.
- If a set is countable and infinite, it is countably infinite.
- Set \mathbb{Z} and \mathbb{Q} are countably infinite.
- Every subset of a countable set is countable.
- Every countable union of countable sets is countable, in particular, the union of two countable sets is countable.

