Discrete Mathematics in Computer Science
B1. Sets: Foundations

Malte Helmert, Gabriele Röger

University of Basel

October 2, 2023
M. Helmert. G. Röger (University of Basel) Discrete Mathematics in Computer Science

Discrete Mathematics in Computer Science
October 2, 2023 - B1. Sets: Foundations

B1.1 Sets

B1.2 Russell's Paradox
B1.3 Relations on Sets
B1.4 Set Operations
B1.5 Finite Sets

A set is an unordered collection of distinct objects.

- unorderd: no notion of a "first" or "second" object, e. g. $\{$ Alice, Bob, Charly $\}=\{$ Charly, Bob, Alice $\}$
- distinct: each object contained at most once, e. g. $\{$ Alice, Bob, Charly $\}=\{$ Alice, Charly, Bob, Alice $\}$

Notation

- Specification of sets
- explicit, listing all elements, e.g. $A=\{1,2,3\}$
- implicit with set-builder notation, specifying a property characterizing all elements, e.g. $A=\left\{x \mid x \in \mathbb{N}_{0}\right.$ and $\left.1 \leq x \leq 3\right\}$,

$$
B=\left\{n^{2} \mid n \in \mathbb{N}_{0}\right\}
$$

- implicit, as a sequence with dots, e.g. $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- implicit with an inductive definition
- $e \in M: e$ is in set M (an element of the set)
- e $\neq M$: e is not in set M
- empty set $\emptyset=\{ \}$

Question: Is it true that $1 \in\{\{1,2\}, 3\}$?
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2023 $6 / 28$

B1.2 Russell's Paradox

Excursus: Barber Paradox

Barber Paradox

In a town there is only one barber, who is male.
The barber shaves all men in the town, and only those, who do not shave themselves.
Who shaves the barber?

We can exploit the self-reference to derive a contradiction.

Bertrand Russell

Question
Is the collection of all sets that do not contain themselves as a member a set?

Is $S=\{M \mid M$ is a set and $M \notin M\}$ a set?

Assume that S is a set.
If $S \notin S$ then $S \in S \rightsquigarrow$ Contradiction
f $S \in S$ then $S \notin S \rightsquigarrow$ Contradiction
Hence, there is no such set S.
\rightarrow Not every property used in set-builder notation defines a set.

Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science
October 2, 2023

- $A \subseteq B: A$ is a subset of B,
i. e., every element of A is an element of B
- $A \subset B: A$ is a strict subset of B,

Definition (Power Set)
The power set $\mathcal{P}(S)$ of a set S is the set of all subsets of S.
That is,

$$
\mathcal{P}(S)=\{M \mid M \subseteq S\} .
$$

Example: $\mathcal{P}(\{a, b\})=$
We write $A \nsubseteq B$ to indicate that A is not a subset of B.
i. e., $A \subseteq B$ and $A \neq B$.

- $A \supseteq B: A$ is a superset of B if $B \subseteq A$.
- $A \supset B: A$ is a strict superset of B if $B \subset A$.

Analogously: $\not \subset, \nsupseteq, \not \supset$

B1.4 Set Operations

Set Operations

Set operations allow us to express sets in terms of other sets

- intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$

If $A \cap B=\emptyset$ then A and B are disjoint.

- union $A \cup B=\{x \mid x \in A$ or $x \in B\}$

$$
A \bigcirc B
$$

- set difference $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$
\square
$A \bigcirc B$
- complement $\bar{A}=B \backslash A$, where $A \subseteq B$ and
B is the set of all considered objects (in a given context)

Properties of Set Operations: Commutativity
Properties of Set Operations: Associativity

Theorem (Associativity of \cup and \cap) For all sets A, B and C it holds that

For all sets A and B it holds that

- $A \cup B=B \cup A$ and
- $A \cap B=B \cap A$.

Question: Is the set difference also commutative, i. e. is $A \backslash B=B \backslash A$ for all sets A and B ?
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

- $(A \cup B) \cup C=A \cup(B \cup C)$ and
- $(A \cap B) \cap C=A \cap(B \cap C)$.
Br. Sets: Foundations

Properties of Set Operations: Distributivity
Properties of Set Operations: De Morgan's Law

Augustus De Morgan
British mathematician (1806-1871)
Theorem (Union distributes over intersection and vice versa)
For all sets A, B and C it holds that
heorem (De Morgan's Law)
For all sets A and B it holds that

- $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and
- $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

B1.5 Finite Sets

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Cardinality of Sets

The cardinality $|S|$ measures the size of set S.
A set is finite if it has a finite number of elements.

Definition (Cardinality)

The cardinality of a finite set is the number of elements it contains.

- $|\emptyset|=$
- $\mid\left\{x \mid x \in \mathbb{N}_{0}\right.$ and $\left.2 \leq x<5\right\} \mid=$
- $|\{3,0,\{1,3\}\}|=$
- $|\mathcal{P}(\{1,2\})|=$
M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2023

Cardinality of the Power Set

Theorem
 Let S be a finite set. Then $|\mathcal{P}(S)|=2^{|S|}$.

Theorem

For finite sets A and B it holds that $|A \cup B|=|A|+|B|-|A \cap B|$.

Corollary
If finite sets A and B are disjoint then $|A \cup B|=|A|+|B|$.

Proof sketch.
We can construct a subset S^{\prime} by iterating over all elements e of S and deciding whether e becomes a member of S^{\prime} or not.
We make $|S|$ independent decisions, each between two options.
Hence, there are $2^{|S|}$ possible outcomes.
Every subset of S can be constructed this way and different choices lead to different sets. Thus, $|\mathcal{P}(S)|=2^{|S|}$.

Alternative

Alternative Proof by Induction

Proof

By induction over $|S|$.
Basis $(|S|=0)$: Then $S=\emptyset$ and $|\mathcal{P}(S)|=|\{\emptyset\}|=1=2^{0}$.
IH : For all sets S with $|S|=n$, it holds that $|\mathcal{P}(S)|=2^{|S|}$.
Inductive Step $(n \rightarrow n+1)$:
Let S^{\prime} be an arbitrary set with $\left|S^{\prime}\right|=n+1$ and
let e be an arbitrary member of S^{\prime}.
Let further $S=S^{\prime} \backslash\{e\}$ and $X=\left\{S^{\prime \prime} \cup\{e\} \mid S^{\prime \prime} \in \mathcal{P}(S)\right\}$.
Then $\mathcal{P}\left(S^{\prime}\right)=\mathcal{P}(S) \cup X$. As $\mathcal{P}(S)$ and X are disjoint and $|X|=|\mathcal{P}(S)|$, it holds that $\left|\mathcal{P}\left(S^{\prime}\right)\right|=2|\mathcal{P}(S)|$.
Since $|S|=n$, we can use the IH and get

$$
\left|\mathcal{P}\left(S^{\prime}\right)\right|=2 \cdot 2^{|S|}=2 \cdot 2^{n}=2^{n+1}=2^{\left|S^{\prime}\right|}
$$

B1. Sets: Foundations Computer Representation as Bit String

Same representation as in enumeration of all subsets:

- Required: Fixed universe U of possible elements
- Represent sets as bitstrings of length $|U|$
- Associate every bit with one object from the universe
- Each bit is 1 iff the corresponding object is in the set

Example:

- $U=\left\{o_{0}, \ldots, o_{9}\right\}$
- Associate the i-th bit (0 -indexed, from left to right) with o_{i}
- $\left\{\mathrm{O}_{2}, \mathrm{o}_{4}, \mathrm{o}_{5}, \mathrm{o}_{9}\right\}$ is represented as:

0010110001

How can the set operations be implemented?

Determine a one-to-one mapping between numbers $0, \ldots, 2^{|S|}-1$ and all subsets of finite set S :

- Consider the binary representation of numbers $0, \ldots, 2^{|S|}-1$.
- Associate every bit with a different element of S.
- Every number is mapped to the set that contains exactly the elements associated with the 1 -bits.

$$
S=\{a, b, c\}
$$ decimal binary set abc

$000 \quad\}$
$001 \quad\{c\}$

10
$011\{b, c\}$

100
101
$\{a, c\}$
$\{a, b\}$
$\{a, b, c\}$

