Discrete Mathematics in Computer Science A3. Proofs II

Malte Helmert, Gabriele Röger

University of Basel

September 27, 2023

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Discrete Mathematics in Computer Science September 27, 2023 — A3. Proofs II

A3.1 Mathematical Induction

A3.2 Structural Induction

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science Septe

A3.1 Mathematical Induction

Proof Techniques

most common proof techniques:

- direct proof
- indirect proof (proof by contradiction)
- contrapositive
- mathematical induction
- structural induction

Mathematical Induction

Concrete Mathematics by Graham, Knuth and Patashnik (p. 3) Mathematical induction proves that we can climb as high as we like on a ladder, by proving that we can climb onto the bottom rung (the basis)

and that

from each rung we can climb up to the next one (the step).

Propositions

Consider a statement on all natural numbers n with $n \ge m$.

- ► E.g. "Every natural number n ≥ 2 can be written as a product of prime numbers."
 - P(2): "2 can be written as a product of prime numbers."
 - P(3): "3 can be written as a product of prime numbers."
 - P(4): "4 can be written as a product of prime numbers."
 - ▶ ...
 - P(n): "n can be written as a product of prime numbers."
 - For every natural number $n \ge 2$ proposition P(n) is true.

Proposition P(n) is a mathematical statement that is defined in terms of natural number n.

Mathematical Induction

Mathematical Induction Proof (of the truth) of proposition P(n) for all natural numbers n with n ≥ m: basis: proof of P(m) induction hypothesis (IH): suppose that P(k) is true for all k with m ≤ k ≤ n inductive step: proof of P(n+1)

using the induction hypothesis

A3. Proofs II

Mathematical Induction: Example I

Theorem For all $n \in \mathbb{N}_0$ with $n \ge 1$: $\sum_{i=1}^n (2i-1) = n^2$ Proof. Mathematical induction over n: basis n = 1: $\sum_{i=1}^{1} (2i - 1) = 2 \cdot 1 - 1 = 1 = 1^2$ IH: $\sum_{i=1}^{k} (2i-1) = k^2$ for all $1 \le k \le n$ inductive step $n \rightarrow n + 1$: $\sum_{i=1}^{n+1} (2i-1) = \left(\sum_{i=1}^{n} (2i-1)\right) + \left(2(n+1)-1\right)$ $\stackrel{\text{IH}}{=} n^2 + (2(n+1) - 1)$ $= n^{2} + 2n + 1 = (n + 1)^{2}$

. . .

Mathematical Induction: Example II

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

Proof. Mathematical Induction over *n*: basis n = 2: trivially satisfied, since 2 is prime IH: Every natural number *k* with $2 \le k \le n$

can be written as a product of prime numbers.

Mathematical Induction: Example II

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

```
Proof (continued).
inductive step n \rightarrow n + 1:
  • Case 1: n+1 is a prime number \rightsquigarrow trivial
  Case 2: n+1 is not a prime number.
      There are natural numbers 2 \leq q, r \leq n with n+1 = q \cdot r.
      Using IH shows that there are prime numbers
      q_1, \ldots, q_s with q = q_1 \cdot \ldots \cdot q_s and
      r_1,\ldots,r_t with r=r_1\cdot\ldots\cdot r_t.
      Together this means n + 1 = q_1 \cdot \ldots \cdot q_s \cdot r_1 \cdot \ldots \cdot r_t.
```

Weak vs. Strong Induction

- Weak induction: Induction hypothesis only supposes that P(k) is true for k = n
- Strong induction: Induction hypothesis supposes that P(k) is true for all k ∈ N₀ with m ≤ k ≤ n
 also: complete induction

Our previous definition corresponds to strong induction.

Which of the examples had also worked with weak induction?

Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction but not with weak induction?

We can always use a stronger proposition:

- "Every n ∈ N₀ with n ≥ 2 can be written as a product of prime numbers."
- ▶ *P*(*n*): "*n* can be written as a product of prime numbers."
- P'(n): "all k ∈ N₀ with 2 ≤ k ≤ n can be written as a product of prime numbers."

A3.2 Structural Induction

A3. Proofs II

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If *n* is a natural number, then n + 1 is a natural number.

Example (Binary Tree)

The set $\mathcal B$ of binary trees is inductively defined as follows:

- ▶ □ is a binary tree (a leaf)
- If L and R are binary trees, then (L, ○, R) is a binary tree (with inner node ○).

Implicit statement: all elements of the set can be constructed by finite application of these rules

A3. Proofs II

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

basic elements that are contained in M

construction rules of the form "Given some elements of *M*, another element of *M* can be constructed like this."

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH):

suppose that the statement is true for some elements M

 inductive step: proof of the statement for elements constructed by applying a construction rule to M (one inductive step for each construction rule) A3. Proofs II

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree) The number of leaves of a binary tree *B*, written *leaves*(*B*), is defined as follows:

$$\mathit{leaves}(\Box) = 1$$

 $\mathit{leaves}(\langle L, \bigcirc, R
angle) = \mathit{leaves}(L) + \mathit{leaves}(R)$

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B), is defined as follows:

$$inner(\Box) = 0$$

 $inner(\langle L, \bigcirc, R \rangle) = inner(L) + inner(R) + 1$

Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B) - 1.

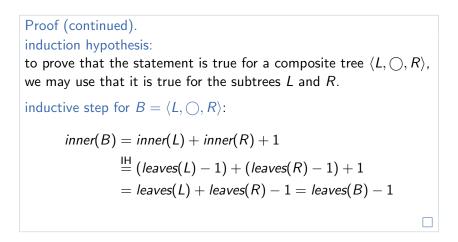
```
Proof.

induction basis:

inner(\Box) = 0 = 1 - 1 = leaves(\Box) - 1

\rightsquigarrow statement is true for base case ....
```

Structural Induction: Example (3)



Example: Tarradiddles

Example (Tarradiddles)

The set of tarradiddles is inductively defined as follows:

- ► → is a tarradiddle.
- V is a tarradiddle.
- If x and y are tarradiddles, then x and y is a tarradiddle.
- If x and y are tarradiddles, then $x \rightarrow y$ is a tarradiddle.

How do you prove with structural induction that every tarradiddle contains an even number of flowers?

Summary

- Mathematical induction is used to prove a proposition P for all natural numbers $\geq m$.
 - Prove P(m).
 - Make hypothesis that P(k) is true for $m \le k \le n$.
 - Establish P(n+1) using the hypothesis.
- Structural induction applies the same general concept to prove a proposition P for all elements of an inductively defined set.