Examples for Proof Techniques I

Gabi Röger

1 Basic Definitions

We will use sets to illustrate some proof techniques. For this purpose, we start with a few basic definitions.

Definition 1. A set is an unordered collection of distinct objects.
The objects in a set are called the elements of the set. A set is said to contain its elements.

We write $x \in S$ to indicate that x is an element of set S, and $x \notin S$ to indicate that S does not contain x.

The set that does not contain any elements is the empty set \emptyset.
We can express sets in terms of other sets:
Definition 2. For sets A and B,

- the union $A \cup B$ is the smallest set that contains all elements of A and all elements of B;
- the intersection $A \cap B$ is the smallest set that contains all elements of A that are elements of B;
- the set difference $A \backslash B$ is the smallest set that contains all elements of A that are not elements of B.

We also can compare sets. Two interesting properties are equality and the subset relation:

Definition 3. Two sets A and B are equal (written $A=B$) if they contain exactly the same elements.

We say that set A is a subset of set B (written $A \subseteq B$) if every element of A is an element of B.

2 Example: Direct Proof

We will use a direct proof to establish the following theorem:
Theorem 1. For all sets A, B and C it holds that

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C) .
$$

Proof. Let A, B and C be arbitrary sets. We will show separately that

- $x \in A \cap(B \cup C)$ implies $x \in(A \cap B) \cup(A \cap C)$ and that
- $x \in(A \cap B) \cup(A \cap C)$ implies $x \in A \cap(B \cup C)$.

We first show that $x \in A \cap(B \cup C)$ implies $x \in(A \cap B) \cup(A \cap C)$:
Consider any $x \in A \cap(B \cup C)$. By the definition of the intersection it holds that $x \in A$ and that $x \in(B \cup C)$. We make a case distinction between $x \in B$ and $x \notin B$:

Case $1(x \in B):$ As $x \in A$ is true, it holds in this case that $x \in(A \cap B)$.
Case $2(x \notin B)$: From $x \in(B \cup C)$ it follows for this case that $x \in C$. This implies together with $x \in A$ that $x \in(A \cap C)$.
In both cases it holds that $x \in A \cap B$ or $x \in A \cap C$, and we conclude that $x \in(A \cap B) \cup(A \cap C)$.

As x was chosen arbitrarily from $A \cap(B \cup C)$ we have shown that every element of $A \cap(B \cup C)$ is an element of $(A \cap B) \cup(A \cap C)$.

We will now show that every element of $(A \cap B) \cup(A \cap C)$ is an element of $A \cap(B \cup C)$.
... [Homework assignment] ...
Overall we have shown for arbitrary sets A, B and C that $x \in A \cap(B \cup C)$ if and only if $x \in(A \cap B) \cup(A \cap C)$, which concludes the proof of the theorem.

3 Example: Proof by Contradiction

We will use a proof by contradiction to establish the following theorem:
Theorem 2. For any sets A and $B:$ If $A \backslash B=\emptyset$ then $A \subseteq B$.

Proof. Assume that there are sets A and B with $A \backslash B=\emptyset$ and $A \nsubseteq B$.
Let A and B be such sets. Since $A \nsubseteq B$ there is some $x \in A$ such that $x \notin B$. For this x it holds that $x \in A \backslash B$. This is a contradiction to $A \backslash B=\emptyset$.

4 Example: Proof by Contrapositive

We will prove the following theorem by contrapositive:
Theorem 3. For any sets A and B : If $A \subseteq B$ then $A \backslash B=\emptyset$.

Proof. We prove the theorem by contrapositive, showing for any sets A and B that if $A \backslash B \neq \emptyset$ then $A \nsubseteq B$.

Let A and B be arbitrary sets with $A \backslash B \neq \emptyset$. As the set difference is not empty, there is at least one x with $x \in A \backslash B$. By the definition of the set difference (\backslash), it holds that $x \in A$ and $x \notin B$. Hence, not all elements of A are elements of B, so it does not hold that $A \subseteq B$.

