Planning and Optimization G10. Network Flow Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

December 12, 2022

Transition Normal For

Flow Heuristic

Content of this Course

Introduction

Reminder: SAS⁺ Planning Tasks

For a SAS⁺ planning task $\Pi = \langle V, I, O, \gamma \rangle$:

- *V* is a set of finite-domain state variables,
- Each atom has the form v = d with $v \in V, d \in dom(v)$.
- Operator preconditions and the goal formula γ are satisfiable conjunctions of atoms.
- Operator effects are conflict-free conjunctions of atomic effects of the form v₁ := d₁ ∧ · · · ∧ v_n := d_n.

Example Task (1)

- One package, two trucks, two locations
- Variables:
 - *pos-p* with dom(*pos-p*) = { loc_1, loc_2, t_1, t_2 }
 - pos-t-i with dom(pos-t-i) = {loc₁, loc₂} for $i \in \{1, 2\}$
- The package is at location 1 and the trucks at location 2,

$$I = \{pos-p \mapsto loc_1, pos-t-1 \mapsto loc_2, pos-t-2 \mapsto loc_2\}$$

The goal is to have the package at location 2 and truck 1 at location 1.

•
$$\gamma = (pos-p = loc_2) \land (pos-t-1 = loc_1)$$

Example Task (2)

• Operators: for $i, j, k \in \{1, 2\}$:

$$egin{aligned} & \mathsf{load}(t_i,\mathsf{loc}_j) = \langle \mathsf{pos-t-i} = \mathsf{loc}_j \land \mathsf{pos-p} = \mathsf{loc}_j, \\ & \mathsf{pos-p} := t_i,1
angle \\ & \mathsf{unload}(t_i,\mathsf{loc}_j) = \langle \mathsf{pos-t-i} = \mathsf{loc}_j \land \mathsf{pos-p} = t_i, \\ & \mathsf{pos-p} := \mathsf{loc}_j,1
angle \\ & \mathsf{drive}(t_i,\mathsf{loc}_j,\mathsf{loc}_k) = \langle \mathsf{pos-t-i} = \mathsf{loc}_j, \\ & \mathsf{pos-t-i} := \mathsf{loc}_k,1
angle \end{aligned}$$

Example Task: Observations

Consider some atoms of the example task:

- pos-p = loc₁ initially true and must be false in the goal
 ▷ at location 1 the package must be loaded one time more often than unloaded.
- pos-p = loc₂ initially false and must be true in the goal
 ▷ at location 2 the package must be unloaded one time more often than loaded.
- *pos-p* = t₁ initially false and must be false in the goal
 ▷ same number of load and unload actions for truck 1.

Can we derive a heuristic from this kind of information?

Example: Flow Constraints

Let π be some arbitrary plan for the example task and let #o denote the number of occurrences of operator o in π . Then the following holds:

- pos-p = loc₁ initially true and must be false in the goal
 ▷ at location 1 the package must be loaded one time more often than unloaded.
 #load(t₁, loc₁) + #load(t₂, loc₁) = 1 + #unload(t₁, loc₁) + #unload(t₂, loc₁)
- pos-p = t₁ initially false and must be false in the goal
 same number of load and unload actions for truck 1.
 #unload(t₁, loc₁) + #unload(t₁, loc₂) =
 #load(t₁, loc₁) + #load(t₁, loc₂)

Network Flow Heuristics: General Idea

- Formulate flow constraints for each atom.
- These are satisfied by every plan of the task.
- The cost of a plan is $\sum_{o \in O} cost(o) \# o$
- The objective value of an integer program that minimizes this cost subject to the flow constraints is a lower bound on the plan cost (i.e., an admissible heuristic estimate).
- As solving the IP is NP-hard, we solve the LP relaxation instead.

How do we get the flow constraints?

How to Derive Flow Constraints?

- The constraints formulate how often an atom can be produced or consumed.
- "Produced" (resp. "consumed") means that the atom is false (resp. true) before an operator application and true (resp. false) in the successor state.
- For general SAS⁺ operators, this depends on the state where the operator is applied: effect v := d only produces v = d if the operator is applied in a state s with s(v) ≠ d.
- For general SAS⁺ tasks, the goal does not have to specify a value for every variable.
- All this makes the definition of flow constraints somewhat involved and in general such constraints are inequalitites.

Good news: easy for tasks in transition normal form

Transition Normal Form

Variables Occurring in Conditions and Effects

- Many algorithmic problems for SAS⁺ planning tasks become simpler when we can make two further restrictions.
- These are related to the variables that occur in conditions and effects of the task.

Definition $(vars(\varphi), vars(e))$

For a logical formula φ over finite-domain variables V, vars(φ) denotes the set of finite-domain variables occurring in φ .

For an effect e over finite-domain variables V,

vars(*e*) denotes the set of finite-domain variables occurring in *e*.

Transition Normal Form

Definition (Transition Normal Form)

A SAS⁺ planning task
$$\Pi = \langle V, I, O, \gamma \rangle$$

is in transition normal form (TNF) if

• for all
$$o \in O$$
, $vars(pre(o)) = vars(eff(o))$, and

• vars
$$(\gamma) = V$$
.

In words, an operator in TNF must mention the same variables in the precondition and effect, and a goal in TNF must mention all variables (= specify exactly one goal state).

Converting Operators to TNF: Violations

There are two ways in which an operator o can violate TNF:

- There exists a variable $v \in vars(pre(o)) \setminus vars(eff(o))$.
- There exists a variable $v \in vars(eff(o)) \setminus vars(pre(o))$.

The first case is easy to address: if v = d is a precondition with no effect on v, just add the effect v := d.

The second case is more difficult: if we have the effect v := d but no precondition on v, how can we add a precondition on v without changing the meaning of the operator?

Converting Operators to TNF: Multiplying Out

Solution 1: multiplying out

- While there exists an operator o and a variable v ∈ vars(eff(o)) with v ∉ vars(pre(o)):
 - For each d ∈ dom(v), add a new operator that is like o but with the additional precondition v = d.
 - Remove the original operator.
- Q Repeat the previous step until no more such variables exist.

Problem:

- If an operator o has n such variables, each with k values in its domain, this introduces kⁿ variants of o.
- Hence, this is an exponential transformation.

Converting Operators to TNF: Auxiliary Values

Solution 2: auxiliary values

- For every variable v, add a new auxiliary value u to its domain.
- Por every variable v and value d ∈ dom(v) \ {u}, add a new operator to change the value of v from d to u at no cost: ⟨v = d, v := u, 0⟩.
- For all operators o and all variables v ∈ vars(eff(o)) \ vars(pre(o)), add the precondition v = u to pre(o).

Properties:

- Transformation can be computed in linear time.
- Due to the auxiliary values, there are new states and transitions in the induced transition system, but all path costs between original states remain the same.

Converting Goals to TNF

- For every variable $v \notin vars(\gamma)$, add the condition v = u to γ .

With these ideas, every SAS^+ planning task can be converted into transition normal form in linear time.

TNF for Example Task (1)

The example task is not in transition normal form:

- Load and unload operators have preconditions on the position of some truck but no effect on this variable.
- The goal does not specify a value for variable *pos-t-2*.

TNF for Example Task (2)

Operators in transition normal form: for $i, j, k \in \{1, 2\}$:

$$\begin{split} \textit{load}(t_i,\textit{loc}_j) &= \langle\textit{pos-t-i} = \textit{loc}_j \land \textit{pos-p} = \textit{loc}_j,\\ \textit{pos-p} &:= t_i \land \textit{pos-t-i} := \textit{loc}_j, 1 \rangle\\ \textit{unload}(t_i,\textit{loc}_j) &= \langle\textit{pos-t-i} = \textit{loc}_j \land \textit{pos-p} = t_i,\\ \textit{pos-p} &:= \textit{loc}_j \land \textit{pos-t-i} := \textit{loc}_j, 1 \rangle\\ \textit{drive}(t_i,\textit{loc}_j,\textit{loc}_k) &= \langle\textit{pos-t-i} = \textit{loc}_j,\\ \textit{pos-t-i} := \textit{loc}_k, 1 \rangle \end{split}$$

TNF for Example Task (3)

To bring the goal in normal form,

- add an additional value **u** to dom(*pos-t-2*)
- add zero-cost operators

$$o_1 = \langle \textit{pos-t-2} = \textit{loc}_1, \textit{pos-t-2} := \mathbf{u}, \mathbf{0} \rangle$$
 and $o_2 = \langle \textit{pos-t-2} = \textit{loc}_2, \textit{pos-t-2} := \mathbf{u}, \mathbf{0} \rangle$

• Add
$$pos-t-2 = \mathbf{u}$$
 to the goal:
 $\gamma = (pos-p = loc_2) \land (pos-t-1 = loc_1) \land (pos-t-2 = \mathbf{u})$

Notation

- In SAS⁺ tasks, states are variable assignments, conditions are conjunctions over atoms, and effects are conjunctions of atomic effects.
- In the following, we use a unifying notation to express that an atom is true in a state/entailed by a condition/ made true by an effect.
- For state s, we write $(v = d) \in s$ to express that s(v) = d.
- For a conjunction of atoms φ, we write (v = d) ∈ φ to express that φ has a conjunct v = d (or alternatively φ ⊨ v = d).
- For effect e, we write (v = d) ∈ e to express that e contains the atomic effect v := d.

Flow Constraints (1)

A flow constraint for an atom relates how often it can be produced to how often it can be consumed.

Let *o* be an operator in transition normal form. Then:

- o produces atom a iff $a \in eff(o)$ and $a \notin pre(o)$.
- o consumes atom a iff $a \in pre(o)$ and $a \notin eff(o)$.
- Otherwise o is neutral wrt. atom a.
- $\rightsquigarrow {\sf State-independent}$

Flow Constraints (2)

A flow constraint for an atom relates how often it can be produced to how often it can be consumed.

The constraint depends on the current state s and the goal γ . If γ mentions all variables (as in TNF), the following holds:

- If $a \in s$ and $a \in \gamma$ then atom a must be equally often produced and consumed.
- Analogously for $a \notin s$ and $a \notin \gamma$.
- If a ∈ s and a ∉ γ then a must be consumed one time more often than it is produced.
- If a ∉ s and a ∈ γ then a must be produced one time more often than it is consumed.

Iverson Bracket

The dependency on the current state and the goal can concisely be expressed with lverson brackets:

Definition (Iverson Bracket)

Let P be a logical proposition (= some statement that can be evaluated to true or false). Then

$$[P] = egin{cases} 1 & ext{if } P ext{ is true} \ 0 & ext{if } P ext{ is false}. \end{cases}$$

Example: $[2 \neq 3] = 1$

Flow Constraints (3)

Definition (Flow Constraint)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a task in transition normal form. The flow constraint for atom *a* in state *s* is

$$[a \in s] + \sum_{o \in O: a \in eff(o)} Count_o = [a \in \gamma] + \sum_{o \in O: a \in pre(o)} Count_o$$

- Count_o is an LP variable for the number of occurrences of operator o.
- Neutral operators either appear on both sides or on none.

Definition (Flow Heuristic)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a SAS⁺ task in transition normal form and let $A = \{(v = d) \mid v \in V, d \in dom(v)\}$ be the set of atoms of Π .

The flow heuristic $h^{\text{flow}}(s)$ is the objective value of the following LP or ∞ if the LP is infeasible:

$$\begin{array}{ll} \text{minimize} & \sum_{o \in O} cost(o) \cdot \text{Count}_o & \text{subject to} \\ [a \in s] + \sum_{o \in O: a \in eff(o)} \text{Count}_o = [a \in \gamma] + \sum_{o \in O: a \in pre(o)} \text{Count}_o \text{ for all } a \in A \\ & \text{Count}_o \geq 0 & \text{for all } o \in O \end{array}$$

Introduction 00000000 Transition Normal Forn

Flow Heuristic

Summary 00

Flow Heuristic on Example Task

→ Blackboard/Demo

Transition Normal Forr

Flow Heuristic

Summary 00

Visualization of Flow in Example Task

Flow Heuristic: Properties (1)

Theorem

The flow heuristic h^{flow} is goal-aware, safe, consistent and admissible.

Proof Sketch.

It suffices to prove goal-awareness and consistency.

Goal-awareness: If $s \models \gamma$ then $Count_o = 0$ for all $o \in O$ is feasible and the objective function has value 0. As $Count_o \ge 0$ for all variables and operator costs are nonnegative, the objective value cannot be smaller.

Flow Heuristic: Properties (2)

Proof Sketch (continued).

Consistency: Let o be an operator that is applicable in state s and let $s' = s[\![o]\!]$.

Increasing Count_o by one in an optimal feasible assignment for the LP for state s' yields a feasible assignment for the LP for state s, where the objective function is $h^{flow}(s') + cost(o)$.

This is an upper bound on $h^{\text{flow}}(s)$, so in total $h^{\text{flow}}(s) \le h^{\text{flow}}(s') + cost(o)$.

Transition Normal Form

Flow Heuristic

Summary ●0

Summary

Summary

- A flow constraint for an atom describes how the number of producing operator applications is linked to the number of consuming operator applications.
- The flow heuristic computes a lower bound on the cost of each operator sequence that satisfies these constraints for all atoms.
- The flow heuristic only considers the number of occurrences of each operator, but ignores their order.