Planning and Optimization G9. Post-hoc Optimization

Malte Helmert and Gabriele Röger

Universität Basel

December 12, 2022

Content of this Course

Introduction

Introduction

Example Task (1)

Example (Example Task)

SAS⁺ task $\Pi = \langle V, I, O, \gamma \rangle$ with

- $V = \{A, B, C\}$ with $dom(v) = \{0, 1, 2, 3, 4\}$ for all $v \in V$
- $I = \{A \mapsto 0, B \mapsto 0, C \mapsto 0\}$
- $O = \{ inc_x^v \mid v \in V, x \in \{0, 1, 2\} \} \cup \{ jump^v \mid v \in V \}$
- $\gamma = A = 3 \land B = 3 \land C = 3$
- Each optimal plan consists of three increment operators for each variable $\rightsquigarrow h^*(I) = 9$
- Each operator affects only one variable.

Example Task (2)

- In projections on single variables we can reach the goal with a *jump* operator: $h^{\{A\}}(I) = h^{\{B\}}(I) = h^{\{C\}}(I) = 1$.
- In projections on more variables, we need for each variable three applications of increment operators to reach the abstract goal from the abstract initial state: $h^{\{A,B\}}(I) = h^{\{A,C\}}(I) = h^{\{B,C\}}(I) = 6$

Example (Canonical Heuristic)

$$C = \{\{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}\}\}$$

$$h^{C}(s) = \max\{h^{\{A\}}(s) + h^{\{B\}}(s) + h^{\{C\}}(s), h^{\{A\}}(s) + h^{\{B,C\}}(s), h^{\{B\}}(s) + h^{\{A,C\}}(s), h^{\{C\}}(s) + h^{\{A,B\}}(s)\}$$

$$h^{\mathcal{C}}(I) = 7$$

Consider the example task:

■ *type-v* operator: operator modifying variable *v*

- type-v operator: operator modifying variable v
- $h^{\{A,B\}} = 6$
 - \Rightarrow in any plan operators of type A or B incur at least cost 6.

- *type-v* operator: operator modifying variable *v*
- h^{A,B} = 6
 ⇒ in any plan operators of type A or B incur at least cost 6.
- $h^{\{A,C\}} = 6$ ⇒ in any plan operators of type A or C incur at least cost 6.
- $h^{\{B,C\}} = 6$ ⇒ in any plan operators of type B or C incur at least cost 6.

- *type-v* operator: operator modifying variable *v*
- h^{A,B} = 6
 ⇒ in any plan operators of type A or B incur at least cost 6.
- $h^{\{A,C\}} = 6$ ⇒ in any plan operators of type A or C incur at least cost 6.
- $h^{\{B,C\}} = 6$ ⇒ in any plan operators of type B or C incur at least cost 6.
- \blacksquare \Rightarrow any plan has at least cost ???.

- *type-v* operator: operator modifying variable *v*
- $h^{\{A,B\}} = 6$ ⇒ in any plan operators of type A or B incur at least cost 6.
- $h^{\{A,C\}} = 6$ ⇒ in any plan operators of type A or C incur at least cost 6.
- $h^{\{B,C\}} = 6$ ⇒ in any plan operators of type B or C incur at least cost 6.
- \blacksquare \Rightarrow any plan has at least cost ???.
- (let's use linear programming...)

- *type-v* operator: operator modifying variable *v*
- $h^{\{A,B\}} = 6$ ⇒ in any plan operators of type A or B incur at least cost 6.
- $h^{\{A,C\}} = 6$ ⇒ in any plan operators of type A or C incur at least cost 6.
- $h^{\{B,C\}} = 6$ ⇒ in any plan operators of type B or C incur at least cost 6.
- ⇒ any plan has at least cost ???.
- (let's use linear programming...)
- \blacksquare \Rightarrow any plan has at least cost 9.

Consider the example task:

- type-v operator: operator modifying variable v
- $h^{\{A,B\}} = 6$ ⇒ in any plan operators of type A or B incur at least cost 6.
- $h^{\{A,C\}} = 6$ ⇒ in any plan operators of type A or C incur at least cost 6.
- $h^{\{B,C\}} = 6$ ⇒ in any plan operators of type B or C incur at least cost 6.
- ⇒ any plan has at least cost ???.
- (let's use linear programming...)
- \blacksquare \Rightarrow any plan has at least cost 9.

Can we generalize this kind of reasoning?

Post-hoc Optimization

Post-hoc Optimization

The heuristic that generalizes this kind of reasoning is the Post-hoc Optimization Heuristic (PhO)

- can be computed for any kind of heuristic . . .
- as long as we are able to determine relevance of operators
- if in doubt, it's always safe to assume an operator is relevant for a heuristic
- but for PhO to work well, it's important that the set of relevant operators is as small as possible

Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

Let $\mathcal T$ be a transition system, and let ℓ be one of its labels.

We say that ℓ affects \mathcal{T} if \mathcal{T} has a transition $s \xrightarrow{\ell} t$ with $s \neq t$.

Definition (Operator Relevance in Abstractions)

An operator o is relevant for an abstraction α if o affects \mathcal{T}^{α} .

We can efficiently determine operator relevance for abstractions.

For a given set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$, we construct a linear program:

- variable X_o for each operator $o \in O$
- \blacksquare intuitively, X_o is cost incurred by operator o
- abstraction heuristics are admissible

$$\sum\nolimits_{o\in O} X_o \ge h^{\alpha}(s) \quad \text{ for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

can tighten these constraints to

$$\sum\nolimits_{o \in O: o \text{ relevant for } \alpha} X_o \ge h^{\alpha}(s) \quad \text{ for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

Linear Program (2)

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

Non-negative variables X_o for all operators $o \in O$

Objective

Minimize $\sum_{o \in O} X_o$

Subject to

$$\sum\nolimits_{o \in O: o \text{ relevant for } \alpha} X_o \ge h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$X_o \ge 0 \qquad \text{for all } o \in O$$

Simplifying the LP

- Reduce the size of the LP by aggregating variables which always occur together in constraints.
- Happens if several operators are relevant for exactly the same heuristics.
- Partitioning $O\!/\!\sim$ induced by this equivalence relation
- One variable $X_{[o]}$ for each $[o] \in O/\sim$

Example

- lacktriangledown only operators o_1, o_2, o_3 and o_4 are relevant for h_1 and $h_1(s_0)=11$
- only operators o_3, o_4, o_5 and o_6 are relevant for h_2 and $h_2(s_0) = 11$
- only operators o_1 , o_2 and o_6 are relevant for h_3 and $h_3(s_0) = 8$

Which operators are relevant for exactly the same heuristics? What is the resulting partitioning?

Example

- only operators o_1, o_2, o_3 and o_4 are relevant for h_1 and $h_1(s_0) = 11$
- only operators o_3, o_4, o_5 and o_6 are relevant for h_2 and $h_2(s_0) = 11$
- only operators o_1, o_2 and o_6 are relevant for h_3 and $h_3(s_0) = 8$

Which operators are relevant for exactly the same heuristics? What is the resulting partitioning?

Answer: $o_1 \sim o_2$ and $o_3 \sim o_4$ $\Rightarrow O/\sim = \{[o_1], [o_3], [o_5], [o_6]\}$

Simplifying the LP: Example

LP before aggregation

Variables

Non-negative variable X_1, \ldots, X_6 for operators o_1, \ldots, o_6

Minimize
$$X_1 + X_2 + X_3 + X_4 + X_5 + X_6$$
 subject to $X_1 + X_2 + X_3 + X_4$ ≥ 11 $X_3 + X_4 + X_5 + X_6 \geq 11$ $X_1 + X_2$ $+ X_6 \geq 8$ $X_i \geq 0$ for $i \in \{1, \dots, 6\}$

Simplifying the LP: Example

LP after aggregation

Variables

Non-negative variable $X_{[1]}, X_{[3]}, X_{[5]}, X_{[6]}$ for equivalence classes $[o_1], [o_3], [o_5], [o_6]$

Minimize
$$X_{[1]} + X_{[3]} + X_{[5]} + X_{[6]}$$
 subject to
$$X_{[1]} + X_{[3]} \geq 11$$

$$X_{[3]} + X_{[5]} + X_{[6]} \geq 11$$

$$X_{[1]} + X_{[6]} \geq 8$$

$$X_{i} \geq 0 \quad \text{for } i \in \{[1], [3], [5], [6]\}$$

PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic $h^{\mathsf{PhO}}_{\{\alpha_1,\ldots,\alpha_n\}}$ for abstractions α_1,\ldots,α_n is the objective value of the following linear program:

$$\text{Minimize } \sum_{[o] \in \textit{O} / \sim} \textit{X}_{[o]} \text{ subject to}$$

$$\sum\nolimits_{[o] \in \textit{O}\!/\!\sim :o \text{ relevant for } \alpha} \underset{X_{[o]}}{X_{[o]}} \geq h^{\alpha}(s) \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

$$\underset{X_{[o]}}{X_{[o]}} \geq 0 \qquad \text{for all } [o] \in \textit{O}\!/\!\sim,$$

where $o \sim o'$ iff o and o' are relevant for exactly the same abstractions in $\alpha_1, \ldots, \alpha_n$.

PhO Heuristic

h^{PhO}

- **1** Precompute all abstraction heuristics $h^{\alpha_1}, \ldots, h^{\alpha_n}$.
- **②** Create LP for initial state s_0 .
- For each new state s:
 - Look up $h^{\alpha}(s)$ for all $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$.
 - Adjust LP by replacing bounds with the $h^{\alpha}(s)$ values.

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and $\{\alpha_1, \ldots, \alpha_n\}$ be a set of abstractions. We show that there is a feasible variable assignment with objective value equal to the cost of an optimal plan.

Let π be an optimal plan for state s and let $cost_{\pi}(O')$ be the cost incurred by operators from $O' \subseteq O$ in π .

Setting each $X_{[o]}$ to $cost_{\pi}([o])$ is a feasible variable assignment: Constraints $X_{[o]} \geq 0$ are satisfied.

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each $\alpha \in {\{\alpha_1, \dots, \alpha_n\}}$, π is a solution in the abstract transition system and the sum in the corresponding constraint equals the cost of the state-changing abstract state transitions (i.e., not accounting for self-loops). As $h^{\alpha}(s)$ corresponds to the cost of an optimal solution in the abstraction, the inequality holds.

For this assignment, the objective function has value $h^*(s)$ (cost of π), so the objective value of the LP is admissible.

Comparison

Combining Estimates from Abstraction Heuristics

 Post-Hoc optimization combines multiple admissible heuristic estimates into one.

Combining Estimates from Abstraction Heuristics

- Post-Hoc optimization combines multiple admissible heuristic estimates into one.
- We have already heard of two other such approaches for abstraction heuristics.
 - the canonical heuristic (for PDBs), and
 - optimal cost partitioning (not covered in detail).

- Post-Hoc optimization combines multiple admissible heuristic estimates into one.
- We have already heard of two other such approaches for abstraction heuristics,
 - the canonical heuristic (for PDBs), and
 - optimal cost partitioning (not covered in detail).
- How does PhO compare to these?

Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern, the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)

Let $\mathcal C$ be a pattern collection for an FDR planning task.

The canonical heuristic $h^{\mathcal{C}}$ for pattern collection \mathcal{C} is defined as

$$h^{\mathcal{C}}(s) = \max_{\mathcal{D} \in cliques(\mathcal{C})} \sum_{P \in \mathcal{D}} h^{P}(s),$$

where cliques(C) is the set of all maximal cliques in the compatibility graph for C.

For a given pattern collection, the canonical heuristic is the best possible admissible heuristic not using cost partitioning.

What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. . .

- ... uses a state-specific LP to find the best possible cost partitioning, and sums up the heuristic estimates.
- ... dominates the canonical heuristic, i.e. for the same pattern collection, it never gives lower estimates than $h^{\mathcal{C}}$.
- ... is very expensive to compute (recomputing all abstract goal distances in every state).

PhO: Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 $X_{[o]}$ for all equivalence classes $[o] \in O/\sim$

Objective

Minimize $\sum_{[o] \in O/\sim} X_{[o]}$

Subject to

$$\sum\nolimits_{[o]\in\textit{O}/\!\sim:\textit{o} \text{ relevant for }\alpha} \textit{X}_{[o]} \geq \textit{h}^{\alpha}(\textit{s}) \quad \text{for all } \alpha \in \{\alpha_1,\ldots,\alpha_n\}$$

$$\textit{X}_{[o]} \geq 0 \qquad \text{for all } [o] \in \textit{O}/\!\!\sim$$

PhO: Dual Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 Y_{α} for each abstraction $\alpha \in \{\alpha_1, \dots, \alpha_n\}$

Objective

Maximize $\sum_{\alpha \in \{\alpha_1,...,\alpha_n\}} h^{\alpha}(s) Y_{\alpha}$

Subject to

$$\sum\nolimits_{\alpha \in \{\alpha_1, \dots, \alpha_n\}: o \text{ relevant for } \alpha} {\it Y}_{\alpha} \leq 1 \quad \text{for all } [o] \in \textit{O} /\!\!\! \sim$$

 $Y_{\alpha} \ge 0$ for all $\alpha \in \{\alpha_1, \dots, \alpha_n\}$

PhO: Dual Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 Y_{α} for each abstraction $\alpha \in \{\alpha_1, \dots, \alpha_n\}$

Objective

Maximize $\sum_{\alpha \in \{\alpha_1,...,\alpha_n\}} h^{\alpha}(s) Y_{\alpha}$

Subject to

$$\sum\nolimits_{\alpha \in \{\alpha_1, \dots, \alpha_n\}: o \text{ relevant for } \alpha} {\it Y}_{\alpha} \leq 1 \quad \text{for all } [o] \in \textit{O} /\!\!\! \sim$$

 $Y_{\alpha} \ge 0$ for all $\alpha \in \{\alpha_1, \dots, \alpha_n\}$

We compute a state-specific cost partitioning that can only scale the operator costs within each heuristic by a factor $0 \le Y_{\alpha} \le 1$.

Relation to Optimal Cost Partitioning

$\mathsf{Theorem}$

Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider a feasible assignment $\langle Y_{\alpha_1}, \dots, Y_{\alpha_n} \rangle$ for the variables of the dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic for the same abstractions with cost partitioning $\langle Y_{\alpha_1} cost, \ldots, Y_{\alpha_n} cost \rangle$.

Theorem

Consider the dual D of the LP solved by the post-hoc optimization heuristic in state s for a given set of abstractions. If we restrict the variables in D to integers, the objective value is the canonical heuristic value $h^{\mathcal{C}}(s)$.

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization heuristic in state s for a given set of abstractions. If we restrict the variables in D to integers, the objective value is the canonical heuristic value $h^{\mathcal{C}}(s)$.

Corollary

The post-hoc optimization heuristic dominates the canonical heuristic for the same set of abstractions.

h^{PhO} vs $h^{\mathcal{C}}$

- For the canonical heuristic, we need to find all maximal cliques, which is an NP-hard problem.
- The post-hoc optimization heuristic dominates the canonical heuristic and can be computed in polynomial time.
- The post-hoc optimization heuristic solves an LP in each state but does not require a preprocessing step
- With post-hoc optimization, a large number of small patterns works well.

Summary

Summary

- Post-hoc optimization heuristic constraints express admissibility of heuristics
- exploits (ir-)relevance of operators for heuristics
- explores the middle ground between canonical heuristic and optimal cost partitioning.
- For the same set of abstractions, the post-hoc optimization heuristic dominates the canonical heuristic.
- The computation can be done in polynomial time.