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G9. Post-hoc Optimization Introduction

Example Task (1)

Example (Example Task)
SAST task M= (V,I,0,v) with
» V ={A, B, C} with dom(v) = {0,1,2,3,4} forall v € V
» | ={A—0,B—0,C — 0}
» O={inc;|veV,xe{0,1,2}}U{jump’|veV}
> inc,=(v=x,v:=x+1,1)
> jump” = </\V,€V;V,7év vi=4,v:=31)
» y=A=3ANB=3AC=3

» Each optimal plan consists of three increment operators for
each variable ~» h*(/) =9

> Each operator affects only one variable.
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Example Task (2)

» In projections on single variables we can reach the goal with a
jump operator: WA (1) = MBIy = piCH (1) = 1.

» In projections on more variables, we need for each variable
three applications of increment operators to reach the

abstract goal from the abstract initial state:
AABYH () = AACH) = MBCH(I) =6

Example (Canonical Heuristic)
C = {{A}{B},{C}.{A. B}.{A C},{B,C}}
K (s) = max{ 1 (s) + h1BY(s) + ACH(s), MM (s) + AIB-CH(s),
hiBY(s) + hIACH(s), hCH(s) + AIABY(s)}

G9. Post-hoc Optimization Introduction

Post-hoc Optimization Heuristic: ldea

Consider the example task:

> type-v operator: operator modifying variable v
> hiABl —6

= in any plan operators of type A or B incur at least cost 6.
> hAC =6

= in any plan operators of type A or C incur at least cost 6.
» hiBCl =6

= in any plan operators of type B or C incur at least cost 6.
» = any plan has at least cost 777.
» (let's use linear programming. . .)

P> = any plan has at least cost 9.
Can we generalize this kind of reasoning?
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Post-hoc Optimization

The heuristic that generalizes this kind of reasoning
is the Post-hoc Optimization Heuristic (PhO)

» can be computed for any kind of heuristic ...
> ... as long as we are able to determine relevance of operators

» if in doubt, it's always safe to assume
an operator is relevant for a heuristic

» but for PhO to work well, it's important that the set of
relevant operators is as small as possible
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Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)
Let 7 be a transition system, and let £ be one of its labels.

We say that ¢ affects 7 if T has a transition s L twith s £ t.

Definition (Operator Relevance in Abstractions)
An operator o is relevant for an abstraction « if o affects 7.

We can efficiently determine operator relevance for abstractions.
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Linear Program (1)

For a given set of abstractions {a1,...,a,}, we construct
a linear program:

» variable X, for each operator o € O
> intuitively, X, is cost incurred by operator o

» abstraction heuristics are admissible
ZoeoXO > h*(s) foraec{ai,...,an}

P can tighten these constraints to

o
ZOGO:O relevant for o Xo 2 h (S) for a € {a17 cee 704n}
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Linear Program (2)

For set of abstractions {aq,...,an}:

Variables
Non-negative variables X, for all operators o0 € O

Objective
Minimize Y .o X,

Subject to
Xo > h*(s) forae€{ay,...,a
ZoEO:o relevant for o - ( ) { L ’ n}
X, >0 foralloe O
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Simplifying the LP

» Reduce the size of the LP by aggregating variables
which always occur together in constraints.

» Happens if several operators are relevant
for exactly the same heuristics.

» Partitioning O/~ induced by this equivalence relation
> One variable X for each [o] € O/~

December 12, 2022 13 /31
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Example

Example
» only operators 01, 02, 03 and o4 are relevant for hy
and hi(sp) =11
> only operators 03, 04, 05 and og are relevant for hy
and hy(sp) =11
» only operators 01,02 and og are relevant for hs
and h3(sp) =8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?

Answer: o1 ~ 0 and 03 ~ 04

= O~ = {[o1], [03]; [0s5], [06]}
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Simplifying the LP: Example

LP before aggregation

Variables
Non-negative variable Xi,..., Xg
for operators o1, ..., 06

Minimize  X; + Xo + X5+ X4 + X5 + Xs  subject to

X1+ Xo+ X35+ Xa > 11
X3+ Xy + Xs+ X > 11
X1+ X2 + Xe>8

X; >0 foric{l,...,6}
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G9. Post-hoc Optimization
Simplifying the LP: Example
LP after aggregation
Variables

Non-negative variable X[q}, X3}, X[5], X[]
for equivalence classes [01], [03], [05], [06]

Minimize X[l] + X[3] + X[5] + X[6] subject to

Xy + X 211
X3+ X1 + Xy 2 11
X + + Xjg) > 8

Xi =0 forie{[1],[3],[5] [6]}
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PhO Heuristic PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic h?glo for abstractions

Qn

Q1,...,an is the objective value of the f&iibwing linear program: hPhO

© Precompute all abstraction heuristics h*1, ..., h*n.

@ Create LP for initial state sp.
© For each new state s:

Minimize Z X[o] subject to
[o]le O/~

Xio1 > h%(s) for all > o )
Z[O]GO/Nio relevant for o [o] = ( ) @€ {041, 7an} L09k up h (S) for a-” «c {ah : ’an} a
» Adjust LP by replacing bounds with the h*(s) values.
X[o] >0 for all [O] S O/N,
where o ~ o iff 0 and o’ are relevant for exactly the same
abstractions in a1, ..., ap.
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Post-hoc Optimization Heuristic: Admissibility Post-hoc Optimization Heuristic: Admissibility
Theorem (Admissibility) Theorem (Admissibility)
The post-hoc optimization heuristic is admissible. The post-hoc optimization heuristic is admissible.
Proof. Proof (continued).
Let M be a planning task and {a1,...,a,} be a set of abstractions. For each a € {a1,...,ap}, mis a solution in the abstract
We show that there is a feasible variable assignment with objective transition system and the sum in the Corresponding constraint
value equal to the cost of an optimal plan. equals the cost of the state-changing abstract state transitions
Let m be an optimal plan for state s and let cost,(O’) be the cost (i.e.. not accounting for self-loops). As h*(s) corresponds to the
incurred by operators from O’ C O in 7. cost of an optimal solution in the abstraction, the inequality holds.
Setting each X[ to costr([0]) is a feasible variable assignment: For this assignment, the objective function has value h*(s)
Constraints X,) > 0 are satisfied. - (cost of ), so the objective value of the LP is admissible. O
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Combining Estimates from Abstraction Heuristics

» Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

» We have already heard of two other such approaches for
abstraction heuristics,

» the canonical heuristic (for PDBs), and
> optimal cost partitioning (not covered in detail).

» How does PhO compare to these?
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Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern,
the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)
Let C be a pattern collection for an FDR planning task.
The canonical heuristic h¢ for pattern collection C is defined as

h(s) =  max Z hP(s),
PeD

Decliques(C)

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For a given pattern collection, the canonical heuristic is the best
possible admissible heuristic not using cost partitioning.
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What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. ..

» .. .uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.

» ...dominates the canonical heuristic, i.e. for the same pattern
collection, it never gives lower estimates than h°.

P> .. .is very expensive to compute
(recomputing all abstract goal distances in every state).
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PhO: Linear Program

For set of abstractions {ay,...,an}:
Variables

X for all equivalence classes [o] € O/~

Objective
Minimize Z[O]GO/N Xo]

Subject to
Xjo) = h*(s) forall a € {a1,. .., an}

for all [o] € O/~

Z[O]GO/NIO relevant for o
X1 20
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PhO: Dual Linear Program

For set of abstractions {a,...,an}:

Variables
Y,, for each abstraction o € {aq,...,an}

Objective
Maximize 3 cta; an B7(5)Ya

Subject to

< ~Y
ZOl6{6¥1,~~~704n}:o relevant for o Vo<1 forall [O] € O/

Yo >0 foralla€{a,...,an}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 < Y, < 1.

Comparison

G9. Post-hoc Optimization

Relation to Optimal Cost Partitioning

Theorem
Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.
Consider a feasible assignment (Y,,,,...
the dual LP for PhO.

, Ya,) for the variables of

Its objective value is equivalent to the cost-partitioning heuristic
for the same abstractions with cost partitioning
(Yo, cost, ..., Y,, cost).
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Relation to Canonical Heuristic
Theorem
Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value hC(s).
Corollary
The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.
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hPhO VS hC

» For the canonical heuristic, we need to find all maximal
cliques, which is an NP-hard problem.

» The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

» The post-hoc optimization heuristic solves an LP in each state
but does not require a preprocessing step

» With post-hoc optimization, a large number of small patterns
works well.
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G9.4 Summary
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G9. Post-hoc Optimization Summary

Summary

P Post-hoc optimization heuristic constraints express
admissibility of heuristics

> exploits (ir-)relevance of operators for heuristics

> explores the middle ground between canonical heuristic and
optimal cost partitioning.

» For the same set of abstractions, the post-hoc optimization
heuristic dominates the canonical heuristic.

» The computation can be done in polynomial time.
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