
Planning and Optimization
G3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

November 30, 2022

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Orderings

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Content of this Course

Planning

Prelude

Foundations

Logic

Heuristics

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut
Heuristic

Cost
Partitioning

Post-Hoc
Optimization

Network
Flows

Operator
Counting

Potential
Heuristics

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Why Landmark Orderings?

To compute a landmark heuristic estimate for state s
we need landmarks for s.

We could invest the time to compute them
for every state from scratch.

Alternatively, we can compute landmarks once and
propagate them over operator applications.

Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

(We will later see yet another approach, where heuristic
computation and landmark computation are integrated ⇝ LM-Cut.)

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩, and
o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩.

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K?
You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩, and
o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩.

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K?
You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Terminology

Let π = ⟨o1, . . . , on⟩ be a sequence of operators applicable in
state I and let φ be a formula over the state variables.

φ is true at time i if I J⟨o1, . . . , oi ⟩K |= φ.

Also special case i = 0: φ is true at time 0 if I |= φ.

No formula is true at time i < 0.

φ is added at time i if it is true at time i but not at time i − 1.

φ is first added at time i if it is true at time i
but not at any time j < i .
We denote this i by first(φ, π).

last(φ, π) denotes last time in which φ is added in π.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).
”φ must be true some time strictly before ψ is first added’.’

a greedy-necessary ordering between φ and ψ (written
φ→gn ψ) if for every plan π = ⟨o1, . . . , on⟩ it holds that
sJ⟨o1, . . . , ofirst(ψ,π)−1⟩K |= φ.
”φ must be true immediately before ψ is first added’.’

a reasonable ordering between φ and ψ (written φ→r ψ)
if in each plan π it holds that first(φ, π) ≤ last(ψ, π).
”φ must be true some time before ψ is last added’.’

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).
”φ must be true some time strictly before ψ is first added’.’

a greedy-necessary ordering between φ and ψ (written
φ→gn ψ) if for every plan π = ⟨o1, . . . , on⟩ it holds that
sJ⟨o1, . . . , ofirst(ψ,π)−1⟩K |= φ.
”φ must be true immediately before ψ is first added’.’

a reasonable ordering between φ and ψ (written φ→r ψ)
if in each plan π it holds that first(φ, π) ≤ last(ψ, π).
”φ must be true some time before ψ is last added’.’

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).
”φ must be true some time strictly before ψ is first added’.’

a greedy-necessary ordering between φ and ψ (written
φ→gn ψ) if for every plan π = ⟨o1, . . . , on⟩ it holds that
sJ⟨o1, . . . , ofirst(ψ,π)−1⟩K |= φ.
”φ must be true immediately before ψ is first added’.’

a reasonable ordering between φ and ψ (written φ→r ψ)
if in each plan π it holds that first(φ, π) ≤ last(ψ, π).
”φ must be true some time before ψ is last added’.’

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Natural Orderings

Definition

There is a natural ordering between φ and ψ (written φ→ ψ) if in
each plan π it holds that first(φ, π) < first(ψ, π).

We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

For fact landmarks v , v ′ with v ̸= v ′,
if nv ′ ∈ LM(nv) then v ′ → v .

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between φ and ψ
(written φ→gn ψ) if in each plan where ψ is first added at time i ,
φ is true at time i − 1.

We can again determine such orderings from the sRTG.

For an OR node nv , we define the set of first achievers as
FA(nv) = {no | no ∈ succ(nv) and nv ̸∈ LM(no)}.
Then v ′ →gn v if nv ′ ∈ succ(no) for all no ∈ FA(nv).

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Propagation

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example Revisited

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩ and o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩.

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K? All not achieved yet on the state path

You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

There is another path to the same state where b was never
true. What now?

Exploit information from multiple paths.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example Revisited

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩ and o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩.

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K? All not achieved yet on the state path

You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

There is another path to the same state where b was never
true. What now?

Exploit information from multiple paths.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Example Revisited

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
I (v) = ⊥ for v ∈ {a, b, c , d},
o1 = ⟨⊤, a ∧ b⟩ and o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩.

You know that a, b, c and d are all fact landmarks for I .

What landmarks are still required to be made true in state
I J⟨o1, o2⟩K? All not achieved yet on the state path

You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Context in Search

A landmark graph captures all known landmark information for a
current state.

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark Graph

We combine all known landmark information for the current state
in a landmark graph.

Definition (Landmark Graph)

Let Π be a planning task, s be a state of Π and L be a set of
formula landmarks for the initial state with set of orderings O.

A landmark graph for state s is a triple G = ⟨L+,L−,O⟩, where
L+,L− ⊆ L and

L+ contains landmarks that were already true in all
considered paths to s and

L− contains landmarks for s that are not true in s.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Initial Landmark Graph

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

Compute L and O and return
⟨{λ ∈ L | init() |= λ}, {λ ∈ L | init() ̸|= λ},O⟩

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Progression for a Transition

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Progression for a Transition

progress landmark graph(⟨L+,L−,O⟩, a, s ′)
accept := {φ ∈ L− | s ′ |= φ}
L′+ := L+ ∪ accept
L′− := L− \ accept
return ⟨L′+,L′−,O⟩

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Exploit Information from Multiple Paths

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Exploit Information from Multiple Paths

merge landmark graphs(⟨L+
1 ,L

−
1 ,O⟩, ⟨L+

2 ,L
−
2 ,O⟩)

L+ := L+
1 ∩ L+

2

L− := L−
1 ∪ L−

2

return ⟨L+,L−,O⟩

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Exploit Ordering Information

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

How do we define graphs[s ′] if we encounter s ′ for the first time?

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Exploit Ordering Information

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Exploit Ordering Information

extend landmark graph(⟨L+,L−,O⟩, s ′)
LG := {φ ∈ L+ | s ′ ̸|= φ and φ is implied by goal}
Lgn := {φ ∈ L+ | s ′ ̸|= φ and ∃φ→gn ψ ∈ O : ψ ̸∈ L+}
Lr := {φ ∈ L+ | ∃ψ →r φ ∈ O with ψ ̸∈ L+}
L′− := L− ∪ LG ∪ Lgn ∪ Lr

return ⟨L+,L′−,O⟩

LG : “currently false but must be true in the goal”

Lgn: “currently false but must be true immediately before
some unachieved landmark becomes true”

Lr: “must again become true after some unachieved landmark
became true”

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark-count Heuristic

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Content of this Course

Planning

Prelude

Foundations

Logic

Heuristics

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut
Heuristic

Cost
Partitioning

Post-Hoc
Optimization

Network
Flows

Operator
Counting

Potential
Heuristics

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let Π be a planning task, s be a state and G = ⟨L+,L−,O⟩ be a
landmark graph for s.

The LM-count heuristic for s and G is

hLM-count
L (G) = |L−|.

In the original work, the set L− was determined without
considering information from multiple paths.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

LM-count Heuristic is Path-dependent

LM-count heuristic gives estimates for landmark graphs,
which depend on the considered paths.

Search algorithms need estimates for states.

⇝ we use estimate from the current landmark graph.

⇝ heuristic estimate for a state is not well-defined.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

LM-count Heuristic is Inadmissible

Example

Consider STRIPS planning task Π = ⟨{a, b}, ∅, {o}, {a, b}⟩ with
o = ⟨∅, {a, b}, ∅, 1⟩. Let L = {a, b} and O = ∅.

The estimate for the initial state is hLM-count(⟨∅, {a, b}, ∅⟩) = 2
while h∗(I) = 1.

⇝ hLM-count is inadmissible.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

LM-count Heuristic: Comments

LM-Count alone is not a particularily informative heuristic.

On the positive side, it complements hFF very well.

For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal hLM-count

estimate.

There is an admissible variant of the heuristic based on
operator cost partitioning.

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Summary

Landmark Orderings Landmark Propagation Landmark-count Heuristic Summary

Summary

We can propagate landmark sets over action applications.

Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further
considered.

We can combine the landmark information from several paths
to the same state.

The LM-count heuristic counts how many landmarks still need
to be satisfied.

The LM-count heuristic is inadmissible (but there is an
admissible variant).

	Landmark Orderings
	

	Landmark Propagation
	

	Landmark-count Heuristic
	

	Summary
	

