

Malte Helmert and Gabriele Röger

Universität Basel

November 30, 2022

Planning and Optimization

G3. Landmarks: Orderings & LM-Count Heuristic

M. Helmert, G. Röger (Universität Basel)

Landmark Orderings

1 / 30

November 30, 2022

G3.1 Landmark Orderings

Planning and Optimization November 30, 2022 — G3. Landmarks: Orderings & LM-Count Heuristic	
G3.1 Landmark Orderings	
G3.2 Landmark Propagation	
G3.3 Landmark-count Heuristic	
G3.4 Summary	
M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022	2 / 30

G3. Landmarks: Orderings & LM-Count Heuristic

Why Landmark Orderings?

- To compute a landmark heuristic estimate for state s we need landmarks for s.
- We could invest the time to compute them for every state from scratch.
- Alternatively, we can compute landmarks once and propagate them over operator applications.
- Landmark orderings are used to detect landmarks that should be further considered because they (again) need to be satisfied later.
- (We will later see yet another approach, where heuristic computation and landmark computation are integrated ~> LM-Cut.)

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 30, 2022 5 / 30

G3. Landmarks: Orderings & LM-Count Heuristic

Landmark Orderings

Landmark Orderings

Terminology

Let $\pi = \langle o_1, \ldots, o_n \rangle$ be a sequence of operators applicable in state I and let φ be a formula over the state variables.

- φ is true at time *i* if $I[\![\langle o_1, \ldots, o_i \rangle]\!] \models \varphi$.
- Also special case i = 0: φ is true at time 0 if $I \models \varphi$.
- No formula is true at time i < 0.
- φ is added at time *i* if it is true at time *i* but not at time *i* 1.
- φ is first added at time i if it is true at time i but not at any time j < i.
 We denote this i by first(φ, π).
- $last(\varphi, \pi)$ denotes last time in which φ is added in π .

G3. Landmarks: Orderings & LM-Count Heuristic

Example

Consider task
$$\langle \{a, b, c, d\}, I, \{o_1, o_2, \dots, o_n\}, d \rangle$$
 with

 $\blacktriangleright I(v) = \bot \text{ for } v \in \{a, b, c, d\},\$

- $o_1 = \langle \top, a \wedge b \rangle$, and
- $\triangleright \ o_2 = \langle a, c \land \neg a \land \neg b \rangle.$

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state *I*[[⟨*o*₁, *o*₂⟩]]?
- You get the additional information that variable a must be true immediately before d is first made true. Any changes?

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 30, 2022 6 / 30

Landmark Orderings

G3. Landmarks: Orderings & LM-Count Heuristic
Landmark Orderings
Definition (Landmark Orderings)
Let φ and ψ be formula landmarks. There is

a natural ordering between φ and ψ (written φ → ψ)
if in each plan π it holds that *first*(φ, π) < *first*(ψ, π).
"φ must be true some time strictly before ψ is first added'.'

a greedy-necessary ordering between φ and ψ (written φ → gn ψ) if for every plan π = ⟨o₁,..., o_n⟩ it holds that s[[⟨o₁,..., o_{first}(ψ, π)-1⟩]] ⊨ φ.
"φ must be true immediately before ψ is first added'.'
a reasonable ordering between φ and ψ (written φ →_r ψ) if in each plan π it holds that *first*(φ, π) ≤ *last*(ψ, π).
"φ must be true some time before ψ is last added'.'

Planning and Optimization

8 / 30

Natural Orderings

Definition

There is a natural ordering between φ and ψ (written $\varphi \rightarrow \psi$) if in each plan π it holds that $first(\varphi, \pi) < first(\psi, \pi)$.

▶ We can directly determine natural orderings from the *LM* sets computed from the simplified relaxed task graph.

Planning and Optimization

For fact landmarks v, v' with $v \neq v'$. if $n_{v'} \in LM(n_v)$ then $v' \to v$.

G3. Landmarks: Orderings & LM-Count Heuristic

M. Helmert, G. Röger (Universität Basel)

Landmark Propagation

9 / 30

November 30, 2022

G3.2 Landmark Propagation

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between φ and ψ (written $\varphi \rightarrow_{gn} \psi$) if in each plan where ψ is first added at time *i*, φ is true at time i-1.

- ▶ We can again determine such orderings from the sRTG.
- For an OR node n_v , we define the set of first achievers as $FA(n_v) = \{n_o \mid n_o \in succ(n_v) \text{ and } n_v \notin LM(n_o)\}.$

Planning and Optimization

▶ Then $v' \rightarrow_{gn} v$ if $n_{v'} \in succ(n_o)$ for all $n_o \in FA(n_v)$.

M. Helmert, G. Röger (Universität Basel)

November 30, 2022

10 / 30

Landmark Propagation

G3. Landmarks: Orderings & LM-Count Heuristic

Example Revisited

Consider task $\langle \{a, b, c, d\}, I, \{o_1, o_2, \dots, o_n\}, d \rangle$ with

- \blacktriangleright $I(v) = \bot$ for $v \in \{a, b, c, d\}$,
- ▶ $o_1 = \langle \top, a \land b \rangle$ and $o_2 = \langle a, c \land \neg a \land \neg b \rangle$.

You know that a, b, c and d are all fact landmarks for I.

- What landmarks are still required to be made true in state $I[[\langle o_1, o_2 \rangle]]$? All not achieved yet on the state path
- > You get the additional information that variable *a* must be true immediately before d is first made true. Any changes? Exploit orderings to determine landmarks that are still required.
- ▶ There is another path to the same state where *b* was never true. What now?

Planning and Optimization

Exploit information from multiple paths.

Landmark Propagation

Context in Search

A landmark graph captures all known landmark information for a current state.

Planning and Optimization

LM-BFS algorithm

 $\begin{array}{l} graphs[\text{init}()] := \text{compute_landmark_graph(init())} \\ open.insert(init()) \\ \textbf{while } open \neq \emptyset \ \textbf{do} \\ s = open.pop() \\ \textbf{if } \text{is_goal}(s) \ \textbf{then return } \text{extract_plan}(s); \\ \mathcal{G} = graphs[s] \\ \textbf{foreach } \langle a, s' \rangle \in succ(s) \ \textbf{do} \\ \mathcal{G}' := \text{progress_landmark_graph}(\mathcal{G}, a, s') \\ \mathcal{G}'' := \text{merge_landmark_graphs}(graphs[s'], \mathcal{G}') \\ graphs[s'] := \text{extend_landmark_graph}(\mathcal{G}'', s') \\ open.insert(s') \end{array}$

M. Helmert, G. Röger (Universität Basel)

November 30, 2022

13 / 30

15 / 30

Landmark Propagation

Initial Landmark Graph

G3. Landmarks: Orderings & LM-Count Heuristic

LM-BFS algorithm graphs[init()] := compute_landmark_graph(init()) open.insert(init()) while open $\neq \emptyset$ do s = open.pop()if is_goal(s) then return extract_plan(s); $\mathcal{G} = graphs[s]$ foreach $\langle a, s' \rangle \in succ(s)$ do $\mathcal{G}' := progress_landmark_graph(\mathcal{G}, a, s')$ $\mathcal{G}'' := merge_landmark_graph(\mathcal{G}, a, s')$ $graphs[s'] := extend_landmark_graph(\mathcal{G}'', s')$ open.insert(s')

Compute \mathcal{L} and \mathcal{O} and return $\langle \{\lambda \in \mathcal{L} \mid \text{init}() \models \lambda \}, \{\lambda \in \mathcal{L} \mid \text{init}() \not\models \lambda \}, \mathcal{O} \rangle$

Planning and Optimization

Landmark Graph

We combine all known landmark information for the current state in a landmark graph.

Definition (Landmark Graph)

Let Π be a planning task, *s* be a state of Π and \mathcal{L} be a set of formula landmarks for the initial state with set of orderings \mathcal{O} .

A landmark graph for state s is a triple $\mathcal{G} = \langle \mathcal{L}^+, \mathcal{L}^-, \mathcal{O} \rangle$, where $\mathcal{L}^+, \mathcal{L}^- \subseteq \mathcal{L}$ and

- *L*⁺ contains landmarks that were already true in all considered paths to *s* and
- \blacktriangleright \mathcal{L}^- contains landmarks for *s* that are not true in *s*.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization Nov

November 30, 2022 14 / 30

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

Progression for a Transition

 $\begin{array}{l} \mathsf{progress_landmark_graph}(\langle \mathcal{L}^+, \mathcal{L}^-, \mathcal{O} \rangle, a, s') \\ \mathsf{accept} := \{ \varphi \in \mathcal{L}^- \mid s' \models \varphi \} \\ \mathcal{L}'^+ := \mathcal{L}^+ \cup \mathsf{accept} \\ \mathcal{L}'^- := \mathcal{L}^- \setminus \mathsf{accept} \\ \mathsf{return} \ \langle \mathcal{L}'^+, \mathcal{L}'^-, \mathcal{O} \rangle \end{array}$

M. Helmert, G. Röger (Universität Basel)

November 30, 2022

Landmark Propagation

17 / 30

19 / 30

Landmark Propagation

G3. Landmarks: Orderings & LM-Count Heuristic Exploit Information from Multiple Paths
$$\begin{split} & \text{merge_landmark_graphs}(\langle \mathcal{L}_1^+, \mathcal{L}_1^-, \mathcal{O} \rangle, \langle \mathcal{L}_2^+, \mathcal{L}_2^-, \mathcal{O} \rangle) \\ & \mathcal{L}^+ := \mathcal{L}_1^+ \cap \mathcal{L}_2^+ \end{split}$$

Planning and Optimization

Planning and Optimization

Exploit Information from Multiple Paths

Landmark Propagation

LM-BFS algorithm graphs[init()] := compute_landmark_graph(init()) open.insert(init()) while open $\neq \emptyset$ do s = open.pop()if is_goal(s) then return extract_plan(s); $\mathcal{G} = graphs[s]$ foreach $\langle a, s' \rangle \in succ(s)$ do $\mathcal{G}' := progress_landmark_graph(\mathcal{G}, a, s')$ $\mathcal{G}'' := merge_landmark_graphs(graphs[s'], \mathcal{G}')$ $graphs[s'] := extend_landmark_graph(\mathcal{G}'', s')$ open.insert(s')

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization Nov

November 30, 2022 18 / 30

Landmark Propagation

G3. Landmarks: Orderings & LM-Count Heuristic Exploit Ordering Information

LM-BFS algorithm

 $\begin{array}{l} graphs[\text{init}()] := \text{compute_landmark_graph(init())} \\ open.insert(\text{init}()) \\ \textbf{while } open \neq \emptyset \ \textbf{do} \\ s = open.pop() \\ \textbf{if } \text{is_goal}(s) \ \textbf{then return } \text{extract_plan}(s); \\ \mathcal{G} = graphs[s] \\ \textbf{foreach } \langle a, s' \rangle \in succ(s) \ \textbf{do} \\ \mathcal{G}' := \text{progress_landmark_graph}(\mathcal{G}, a, s') \\ \mathcal{G}'' := \textbf{merge_landmark_graphs}(graphs[s'], \mathcal{G}') \\ graphs[s'] := \text{extend_landmark_graph}(\mathcal{G}'', s') \\ open.insert(s') \end{array}$

How do we define graphs[s'] if we encounter s' for the first time?

22 / 30

G3.3 Landmark-count Heuristic

M. Helmert, G. Röger (Universität Basel)

G3. Landmarks: Orderings & LM-Count Heuristic

Landmark-count Heuristic

Landmark-count Heuristic

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have to be achieved.

Definition (LM-count Heuristic)

Let Π be a planning task, *s* be a state and $\mathcal{G} = \langle \mathcal{L}^+, \mathcal{L}^-, \mathcal{O} \rangle$ be a landmark graph for *s*.

The LM-count heuristic for s and \mathcal{G} is

 $h_{\mathcal{L}}^{\mathsf{LM-count}}(\mathcal{G}) = |\mathcal{L}^{-}|.$

Planning and Optimization

In the original work, the set \mathcal{L}^- was determined without considering information from multiple paths.

M. Helmert, G. Röger (Universität Basel)

November 30, 2022 25 / 30

Landmark-count Heuristic

27 / 30

G3. Landmarks: Orderings & LM-Count Heuristic

LM-count Heuristic is Inadmissible

Example

Consider STRIPS planning task $\Pi = \langle \{a, b\}, \emptyset, \{o\}, \{a, b\} \rangle$ with $o = \langle \emptyset, \{a, b\}, \emptyset, 1 \rangle$. Let $\mathcal{L} = \{a, b\}$ and $\mathcal{O} = \emptyset$.

The estimate for the initial state is $h^{\text{LM-count}}(\langle \emptyset, \{a, b\}, \emptyset \rangle) = 2$ while $h^*(I) = 1$.

 $\rightsquigarrow h^{\text{LM-count}}$ is inadmissible.

LM-count heuristic gives estimates for landmark graphs, which depend on the considered paths.
 Search algorithms need estimates for states.
 \$\sim we use estimate from the current landmark graph.

LM-count Heuristic is Path-dependent

 \blacktriangleright \rightsquigarrow heuristic estimate for a state is not well-defined.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

G3. Landmarks: Orderings & LM-Count Heuristic

G3. Landmarks: Orderings & LM-Count Heuristic

Landmark-count Heuristic

26 / 30

November 30, 2022

Landmark-count Heuristic

