
Planning and Optimization
G3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

November 30, 2022

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 1 / 30

Planning and Optimization
November 30, 2022 — G3. Landmarks: Orderings & LM-Count Heuristic

G3.1 Landmark Orderings

G3.2 Landmark Propagation

G3.3 Landmark-count Heuristic

G3.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 2 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

G3.1 Landmark Orderings

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 3 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Content of this Course

Planning

Prelude

Foundations

Logic

Heuristics

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut
Heuristic

Cost
Partitioning

Post-Hoc
Optimization

Network
Flows

Operator
Counting

Potential
Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 4 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Why Landmark Orderings?

▶ To compute a landmark heuristic estimate for state s
we need landmarks for s.

▶ We could invest the time to compute them
for every state from scratch.

▶ Alternatively, we can compute landmarks once and
propagate them over operator applications.

▶ Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

▶ (We will later see yet another approach, where heuristic
computation and landmark computation are integrated ⇝ LM-Cut.)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 5 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Example

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
▶ I (v) = ⊥ for v ∈ {a, b, c , d},
▶ o1 = ⟨⊤, a ∧ b⟩, and
▶ o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩.

You know that a, b, c and d are all fact landmarks for I .

▶ What landmarks are still required to be made true in state
I J⟨o1, o2⟩K?

▶ You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 6 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Terminology

Let π = ⟨o1, . . . , on⟩ be a sequence of operators applicable in
state I and let φ be a formula over the state variables.

▶ φ is true at time i if I J⟨o1, . . . , oi ⟩K |= φ.

▶ Also special case i = 0: φ is true at time 0 if I |= φ.

▶ No formula is true at time i < 0.

▶ φ is added at time i if it is true at time i but not at time i − 1.

▶ φ is first added at time i if it is true at time i
but not at any time j < i .
We denote this i by first(φ, π).

▶ last(φ, π) denotes last time in which φ is added in π.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 7 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Landmark Orderings

Definition (Landmark Orderings)

Let φ and ψ be formula landmarks. There is

▶ a natural ordering between φ and ψ (written φ→ ψ)
if in each plan π it holds that first(φ, π) < first(ψ, π).
”φ must be true some time strictly before ψ is first added’.’

▶ a greedy-necessary ordering between φ and ψ (written
φ→gn ψ) if for every plan π = ⟨o1, . . . , on⟩ it holds that
sJ⟨o1, . . . , ofirst(ψ,π)−1⟩K |= φ.
”φ must be true immediately before ψ is first added’.’

▶ a reasonable ordering between φ and ψ (written φ→r ψ)
if in each plan π it holds that first(φ, π) ≤ last(ψ, π).
”φ must be true some time before ψ is last added’.’

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 8 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Natural Orderings

Definition

There is a natural ordering between φ and ψ (written φ→ ψ) if in
each plan π it holds that first(φ, π) < first(ψ, π).

▶ We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

▶ For fact landmarks v , v ′ with v ̸= v ′,
if nv ′ ∈ LM(nv) then v ′ → v .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 9 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Greedy-necessary Orderings

Definition
There is a greedy-necessary ordering between φ and ψ
(written φ→gn ψ) if in each plan where ψ is first added at time i ,
φ is true at time i − 1.

▶ We can again determine such orderings from the sRTG.

▶ For an OR node nv , we define the set of first achievers as
FA(nv) = {no | no ∈ succ(nv) and nv ̸∈ LM(no)}.

▶ Then v ′ →gn v if nv ′ ∈ succ(no) for all no ∈ FA(nv).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 10 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

G3.2 Landmark Propagation

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 11 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Example Revisited

Consider task ⟨{a, b, c , d}, I , {o1, o2, . . . , on}, d⟩ with
▶ I (v) = ⊥ for v ∈ {a, b, c , d},
▶ o1 = ⟨⊤, a ∧ b⟩ and o2 = ⟨a, c ∧ ¬a ∧ ¬b⟩.

You know that a, b, c and d are all fact landmarks for I .

▶ What landmarks are still required to be made true in state
I J⟨o1, o2⟩K? All not achieved yet on the state path

▶ You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

▶ There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 12 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Context in Search

A landmark graph captures all known landmark information for a
current state.

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 13 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Landmark Graph

We combine all known landmark information for the current state
in a landmark graph.

Definition (Landmark Graph)

Let Π be a planning task, s be a state of Π and L be a set of
formula landmarks for the initial state with set of orderings O.

A landmark graph for state s is a triple G = ⟨L+,L−,O⟩, where
L+,L− ⊆ L and

▶ L+ contains landmarks that were already true in all
considered paths to s and

▶ L− contains landmarks for s that are not true in s.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 14 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Initial Landmark Graph

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

Compute L and O and return
⟨{λ ∈ L | init() |= λ}, {λ ∈ L | init() ̸|= λ},O⟩

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 15 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Progression for a Transition

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 16 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Progression for a Transition

progress landmark graph(⟨L+,L−,O⟩, a, s ′)
accept := {φ ∈ L− | s ′ |= φ}
L′+ := L+ ∪ accept
L′− := L− \ accept
return ⟨L′+,L′−,O⟩

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 17 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Exploit Information from Multiple Paths

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 18 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Exploit Information from Multiple Paths

merge landmark graphs(⟨L+
1 ,L

−
1 ,O⟩, ⟨L+

2 ,L
−
2 ,O⟩)

L+ := L+
1 ∩ L+

2

L− := L−
1 ∪ L−

2

return ⟨L+,L−,O⟩

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 19 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Exploit Ordering Information

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

How do we define graphs[s ′] if we encounter s ′ for the first time?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 20 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Exploit Ordering Information

LM-BFS algorithm

graphs[init()] := compute landmark graph(init())
open.insert(init())
while open ̸= ∅ do

s = open.pop()
if is goal(s) then return extract plan(s);
G = graphs[s]
foreach ⟨a, s ′⟩ ∈ succ(s) do

G′ := progress landmark graph(G, a, s ′)
G′′ :=merge landmark graphs(graphs[s ′],G′)
graphs[s ′] := extend landmark graph(G′′, s ′)
open.insert(s ′)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 21 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Exploit Ordering Information

extend landmark graph(⟨L+,L−,O⟩, s ′)
LG := {φ ∈ L+ | s ′ ̸|= φ and φ is implied by goal}
Lgn := {φ ∈ L+ | s ′ ̸|= φ and ∃φ→gn ψ ∈ O : ψ ̸∈ L+}
Lr := {φ ∈ L+ | ∃ψ →r φ ∈ O with ψ ̸∈ L+}
L′− := L− ∪ LG ∪ Lgn ∪ Lr

return ⟨L+,L′−,O⟩

▶ LG : “currently false but must be true in the goal”

▶ Lgn: “currently false but must be true immediately before
some unachieved landmark becomes true”

▶ Lr: “must again become true after some unachieved landmark
became true”

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 22 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

G3.3 Landmark-count Heuristic

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 23 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

Content of this Course

Planning

Prelude

Foundations

Logic

Heuristics

Constraints

Landmarks RTG Landmarks

Orderings

LM-Count
Heuristic

MHS Heuristic

Cut Landmarks

LM-Cut
Heuristic

Cost
Partitioning

Post-Hoc
Optimization

Network
Flows

Operator
Counting

Potential
Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 24 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let Π be a planning task, s be a state and G = ⟨L+,L−,O⟩ be a
landmark graph for s.

The LM-count heuristic for s and G is

hLM-count
L (G) = |L−|.

In the original work, the set L− was determined without
considering information from multiple paths.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 25 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic is Path-dependent

▶ LM-count heuristic gives estimates for landmark graphs,
which depend on the considered paths.

▶ Search algorithms need estimates for states.

▶ ⇝ we use estimate from the current landmark graph.

▶ ⇝ heuristic estimate for a state is not well-defined.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 26 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic is Inadmissible

Example

Consider STRIPS planning task Π = ⟨{a, b}, ∅, {o}, {a, b}⟩ with
o = ⟨∅, {a, b}, ∅, 1⟩. Let L = {a, b} and O = ∅.

The estimate for the initial state is hLM-count(⟨∅, {a, b}, ∅⟩) = 2
while h∗(I) = 1.

⇝ hLM-count is inadmissible.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 27 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic: Comments

▶ LM-Count alone is not a particularily informative heuristic.

▶ On the positive side, it complements hFF very well.

▶ For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal hLM-count

estimate.

▶ There is an admissible variant of the heuristic based on
operator cost partitioning.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 28 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Summary

G3.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 29 / 30

G3. Landmarks: Orderings & LM-Count Heuristic Summary

Summary

▶ We can propagate landmark sets over action applications.

▶ Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further
considered.

▶ We can combine the landmark information from several paths
to the same state.

▶ The LM-count heuristic counts how many landmarks still need
to be satisfied.

▶ The LM-count heuristic is inadmissible (but there is an
admissible variant).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 30, 2022 30 / 30

	Landmark Orderings
	

	Landmark Propagation
	

	Landmark-count Heuristic
	

	Summary
	

