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Landmarks

Basic Idea: Something that must happen in every solution

For example
m some operator must be applied (action landmark)
m some atomic proposition must hold (fact landmark)

m some formula must be true (formula landmark)

— Derive heuristic estimate from this kind of information.
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Landmarks

Basic Idea: Something that must happen in every solution

For example
m some operator must be applied (action landmark)
m some atomic proposition must hold (fact landmark)

m some formula must be true (formula landmark)

— Derive heuristic estimate from this kind of information.

We mostly consider fact and disjunctive action landmarks.
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Reminder: Terminology

ot 1 n—1 %o n

Consider sequence of transitions s — s*,...,s s
such that s° = s and s" = ¢’
m s ..., s"is called (state) path from s to s’

m /1,...,0,is called (label) path from s to s’
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Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of a propositional or FDR planning task
N=(V,I,0,v).

A disjunctive action landmark for s is a set of operators L C O
such that every label path from s to a goal state contains an

operator from L.
The cost of landmark L is cost(L) = minye; cost(o).

If we talk about landmarks for the initial state, we omit “for I".
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Fact and Formula Landmarks

Definition (Formula and Fact Landmark)

Let s be a state of a propositional or FDR planning task
N=(V,I,0,v).

A formula landmark for s is a formula X over V such that
every state path from s to a goal state contains a state s’
with s’ = .

If A is an atomic proposition then A is a fact landmark.

If we talk about landmarks for the initial state, we omit “for I".
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Landmarks: Example

Consider a FDR planning task (V, /, O,~) with
m V = {robot-at, dishes-at} with
m dom(robot-at) = {Al,...,C3,B4,A5,...,B6}
m dom(dishes-at) = {Table, Robot, Dishwasher}
m | = {robot-at — C1, dishes-at — Table}
B operators

m move-x-y to move from cell x to adjacent cell y
m pickup dishes, and
m load dishes into the dishwasher.

m v = (robot-at = B6) A (dishes-at = Dishwasher)
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Fact and Formula Landmarks: Example

1 2 3 4 5 6

00 [}

3,4

C %
Images from wikimedia

Each fact in gray is a fact landmark:
m robot-at = x for x € {Al, A6, B3, B4, B5,B6, C1}
m dishes-at = x for x € {Dishwasher, Robot, Table}
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Fact and Formula Landmarks: Example

1 2 3 4 5 6

00 [}

™

C %
Images from wikimedia

Each fact in gray is a fact landmark:
m robot-at = x for x € {Al, A6, B3, B4, B5,B6, C1}
m dishes-at = x for x € {Dishwasher, Robot, Table}

Formula landmarks:
m dishes—-at = Robot A robot-at = B4
m robot-at = Bl V robot-at = A2



Landmarks andmarks fro TGs a arks Summar
000000080 000000000« 00

Actions of same color form disjunctive action landmark:

m {pickup} = {move-A6-B6, move-B5-B6}
m {load} = {move-A3-B3, move-B2-B3, move-C3-B3}
= {move-B3-B4} = {move-B1-Al, move-A2-Al}

= {move-B4-B5} ..
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Remarks

m Not every landmark is informative. Some examples:
m The set of all operators is a disjunctive action landmark
unless the initial state is already a goal state.
m Every variable that is initially true is a fact landmark.
m The goal formula is a formula landmark.
m Deciding whether a given atomic proposition is a fact
landmark is as hard as the plan existence problem.

m Deciding whether a given operator set is a disjunctive
action landmark is as hard as the plan existence problem.

m Every fact landmark v that is initially false induces a
disjunctive action landmark consisting of all operators that
possibly make v true.
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Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:
m RHW landmarks: Richter, Helmert & Westphal. Landmarks
Revisited. (AAAI 2008)
m LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and
Abstractions: What's the Difference Anyway? (ICAPS 2009)
m h™ landmarks: Keyder, Richter & Helmert: Sound and
Complete Landmarks for And/Or Graphs (ECAI 2010)

We will now discuss h™ landmarks restricted to to STRIPS
planning tasks, starting with m = 1.
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Incidental Landmarks: Example

Example (Incidental Landmarks)
Consider a STRIPS planning task (V. I, {01, 02}, G) with

V ={a,b,c,d e},
I={a—T,b—~T,c—F,d—F,e—T,f— F}
01 = <{a},{c, d7 e}v{b}>’

o = ({d, e}, {f},{a}), and

G ={e,f}.

Single solution: (o1, 02)
m All variables are fact landmarks.
m Variable b is initially true but irrelevant for the plan.

m Variable ¢ gets true as “side effect” of o; but it is not
necessary for the goal or to make an operator applicable.
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Causal Landmarks (1)

Definition (Causal Formula Landmark)

Let M= (V,I,0,~) be a propositional or FDR planning task.

A formula A over V is a causal formula landmark for / if v = A or
if for all plans 7 = (o1, ..., 0n) there is an o; with pre(o;) = A.
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Causal Landmarks (2)

Special case: Fact Landmark for STRIPS task

Definition (Causal Fact Landmark)

Let M= (V,I, 0, G) be a STRIPS planning task
(in set representation).

A variable v € V is a causal fact landmark for /
mifve Gor

m if for all plans m = (o1, ..., 0,) there is an o; with v € pre(o;).
v
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Causal Landmarks: Example

Example (Causal Landmarks)
Consider a STRIPS planning task (V,/,{o1, 02}, G) with

V ={ab,c,d e},
I={a—T,b—~T,c—F,d—F,e—T,f— F}

01 = <{a},{c, d, e}v{b}>v

02 = <{d7 e}v{f}a{a}>7 and

G ={e, f}.

Single solution: (o1, 02)
m All variables are fact landmarks for the initial state.

m Only a,d, e and f are causal landmarks.
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What We Are Doing Next

Causal landmarks are the desirable landmarks.

m We can use the simplified version of RTGs for STRIPS to
compute causal landmarks for STRIPS planning tasks.

We will define landmarks of AND/OR graphs, ...

and show how they can be computed.

Afterwards we establish that these are landmarks
of the planning task.
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Reminder: Simplified Relaxed Task Graph

Definition
For a STRIPS planning task M = (V, I, 0, G) (in set
representation), the simplified relaxed task graph sRTG(IM") is the
AND/OR graph (Nang U Nor, A, type) with
m Nyg = {no | o€ O} U {V[, Vc;}
with type(n) = A for all n € Nypg,
m Noe={n,|veV}
with type(n) =V for all n € No, and
m A= {(nsn) | 0€ O,ac add(o)} U
{(no,np) | 0 € O, p € pre(o)} U
{{ny,n) |veltu
{{

ng,ny) | veG}

Like RTG but without extra nodes to support arbitrary conditions.
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Slmpllfled RTG: Example

The simplified RTG for our example task is:
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Justification

Definition (Justification)
Let G = (N, A, type) be an AND/OR graph.
A subgraph J = (N7, A, type’) with N/ C N and A’ C A and
type’ = type|ps justifies n, € N iff
mn, €N,
m Vn € N7 with type(n) = A:
Y{n,n'y € A:n' € N/ and (n,n') € A/
m Vn € N7 with type(n) = V:
In,n’y € A:n’ € N’ and (n,n') € A/, and

m J is acyclic.

“Proves” that n, is forced true.
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Landmarks in AND/OR Graphs

Definition (Landmarks in AND/OR Graphs)

Let G = (N, A, type) be an AND/OR graph.

A node n € N is a landmark for reaching n, € N
if n € V7 for all justifications J for n,.

But: exponential number of possible justifications
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Characterizing Equation System

Let G = (N, A, type) be an AND/OR graph. Consider the
following system of equations:

LM(n)={n}uU [ LM(n") type(n)=V
(n,n")EA

LM(n) ={n}u [ LM(n") type(n)=n
(n,n")EA

The equation system has a unique maximal solution (maximal with
regard to set inclusion), and for this solution it holds that

n" € LM(n) iff n" is a landmark for reaching n in G.
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Computation of Maximal Solution

Let G = (N, A, type) be an AND/OR graph. Consider the
following system of equations:

LM(n)={n}uU () LM(n") type(n)=V
(n,n"YeA
LM(n)={n}u [ LM(n") type(n)=n

(n,n")eA

The equation system has a unique maximal solution (maximal with
regard to set inclusion).

V.

Computation: Initialize landmark sets as LM(n) = N and
apply equations as update rules until fixpoint.
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Computation: Example
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Computation: Example

a-f,1,G,01,00 a-f,1,G,01,00

a-f,1,G,o1,

Initialize with all nodes
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Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

a-f,1,G,01,0 a-f,1,G,01,00 o a-f,1\G,01,00
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Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

LM(a) = {a} U LM(1)
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Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

LM(b) = {b} U LM(I)



Landmarks from RTGs Landmarks from M Summar

000000000000 00e0000

Computation: Example

a-f,1,G,01,00 a-f,1,G,01,00

LM(e) = {e} U (LM(1) N LM(oy))



Landmarks from RTGs rks from M Summar

000000000000 00e0000

Computation: Example

a,l,o1 a-f,1,G,01,02

LM(o1) = {o1} U LM(a)
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a,l,o1 a-f,1,G,01,02

LM(c) = {c} U LM(o1)
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a,l,o1 a-f,1,G,01,02

LM(d) = {d} U LM(0,)
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a,l,o1 a,d,el, 01,00

LM(02) = {02} U LM(d) U LM(e)



Landmarks from RTGs rks from M Summar

000000000000 00e0000

a,l,o1 a,d,el, 01,00

a,d,e¥,l,01,02

LM(f) = {f} U LM(o02)
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a,l,o1 a,d,el, 01,00

LM(G) = {G} U LM(e) U LM(f)
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Relation to Planning Task Landmarks

Let M= (V,I,0,~) be a STRIPS planning task and
let L be the set of landmarks for reaching n¢ in sSRTG(M).

The set {v € V | n, € L} is exactly the set of
causal fact landmarks in N~

For operators o € O, if n, € L then {o} is a
disjunctive action landmark in 1T,
There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)
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Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)
Consider a STRIPS planning task (V,/,{o1, 02}, G) with

V ={ab,c,d e r},
I={a—T,b—~T,c—F,d—F,e—T,f— F}
= ({a}, {c,d, e}, {b}),
= ({d e}, {f}, {a}), and
G ={e,f}.

m LM(ng) = {a,d, e, f,l,G, 01,02}
m a,d, e, and f are causal fact landmarks of M.

m {01} and {0z} are disjunctive action landmarks of ™.
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(Some) Landmarks of " Are Landmarks of Tl

Let T be a STRIPS planning task.

All fact landmarks of M are fact landmarks of I and all disjunctive
action landmarks of M are disjunctive action landmarks of I.

Let L be a disjunctive action landmark of ™ and 7 be a plan for
M. Then 7 is also a plan for M and, thus, = contains an operator
from L.

Let f be a fact landmark of M. If f is already true in the initial
state, then it is also a landmark of I. Otherwise, every plan for "
contains an operator that adds f and the set of all these operators
is a disjunctive action landmark of ™. Therefore, also each plan of
I contains such an operator, making f a fact landmark of I1. DJ
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Not All Landmarks of 1™ are Landmarks of I

Consider STRIPS task ({a, b, c},0,{o1,02},{c}) with
o = ({},{a},{},1) and 0 = ({a}, {c},{a}, 1).

a A cis a formula landmark of M but not of M.
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Landmarks from 1™
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Reminder: 1™ Compilation

Definition (™)
Let M= (V,I, 0, G) be a STRIPS planning task.
For m € Ny, the task ™ is the STRIPS planning task
(VM Im O™ G™) where
0" ={a,s|o€0,SCV,|S| <m,SnN(add(o) U del(o)) =0}
with
m pre(ao,s) = (pre(o) U S)™
m add(aps) = {vy | Y C add(o)US,|Y| < m, Y nadd(o) # 0}
m del(aps) =0
m cost(a,s) = cost(o)
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Landmarks from the ™ Compilation (1)

Idea:
m [1™ is delete-free, so we can compute all causal (meta-)fact
landmarks from the AND/OR graph.
m These landmarks correspond to formula landmarks of the
original problem.



Landmarks from M Summar

[e]e]e] le]ele)

Landmarks from the ™ Compilation (2)

Let M= (V,I,0,G) be a STRIPS planning task.
If meta-variable vs is a fact landmark for I"™ in 11 then A\ cg v is
a formula landmark for | in T1.

(Proof ommited.)
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™ Landmarks: Example

Consider again our running example:

STRIPS planning task M = (V, I, {01, 02}, G) with

V = {au b7 G, d7 €, f}7
I={a—»T,b—>T,c—F,d—F,e—T,f— F},

o1 = <{a},{c, d7 6}7{b}>7

02 = <{d7 e},{f}, {a}>? and

G ={e f}.

Meta-variable v(q ¢} is a causal fact landmark for /2 in M2,
so d A e is a causal formula landmark for T1.
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Landmarks from the MN™ Compilation (3)

Let M= (V,I,O,G) be a STRIPS planning task. For m € N; let
L™ ={Avecv | C C V,vc is a causal fact landmark of N} be
the set of formula landmarks derived from ™.

Let A be a conjunction over V that is a causal formula landmark
of M. For sufficiently large m, L™ contains X' with ' = \.

(Proof omitted.)

~» can find all causal conjunctive formula landmarks
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[1™ Landmarks: Discussion

With the ™ compilation, we can find causal fact landmarks
of N that are not causal fact landmarks of M.

In addition we can find conjunctive formula landmarks.
The approach takes to some extent delete effects into account.

However, the approach takes exponential time in m.

Even for small m, the additional cost for computing the
landmarks often outweights the time saved from better
heuristic guidance.
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Summary

m Fact landmark: atomic proposition that is true in each state
path to a goal

m Disjunctive action landmark: set L of operators such that
every plan uses some operator from L

m We can efficiently compute all causal fact landmarks of a
delete-free STRIIPS task from the (simplified) RTG.

m Fact landmarks of the delete relaxed task are also
landmarks of the original task.

m We can use the 1" compilation to find more landmarks.



	Landmarks
	

	Landmarks from RTGs
	

	Landmarks from m
	

	Summary
	


