

Planning and Optimization

G2. Landmarks: RTG Landmarks

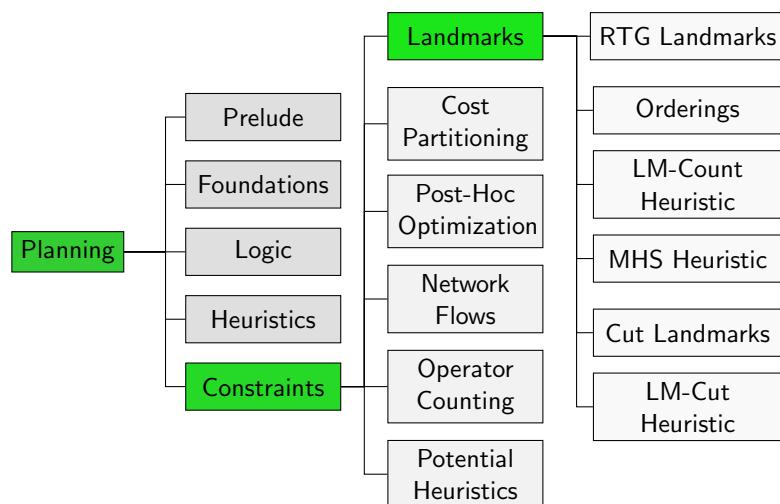
Malte Helmert and Gabriele Röger

Universität Basel

November 28, 2022

Planning and Optimization

November 28, 2022 — G2. Landmarks: RTG Landmarks


G2.1 Landmarks

G2.2 Landmarks from RTGs

G2.3 Landmarks from Π^m

G2.4 Summary

Content of this Course

G2.1 Landmarks

Landmarks

Basic Idea: Something that must happen **in every solution**

For example

- ▶ some operator must be applied (**action landmark**)
- ▶ some atomic proposition must hold (**fact landmark**)
- ▶ some formula must be true (**formula landmark**)

→ Derive heuristic estimate from this kind of information.

We mostly consider **fact** and **disjunctive action landmarks**.

Reminder: Terminology

Consider sequence of transitions $s^0 \xrightarrow{\ell_1} s^1, \dots, s^{n-1} \xrightarrow{\ell_n} s^n$ such that $s^0 = s$ and $s^n = s'$.

- ▶ s^0, \dots, s^n is called **(state) path** from s to s'
- ▶ ℓ_1, \dots, ℓ_n is called **(label) path** from s to s'

Disjunctive Action Landmarks

Definition (Disjunctive Action Landmark)

Let s be a state of a propositional or FDR planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A **disjunctive action landmark** for s is a set of operators $L \subseteq O$ such that every label path from s to a goal state contains an operator from L .

The **cost** of landmark L is $cost(L) = \min_{o \in L} cost(o)$.

If we talk about landmarks for the initial state, we omit "for I ".

Fact and Formula Landmarks

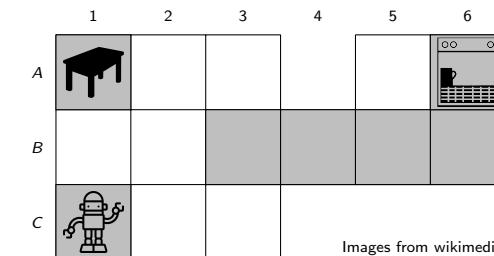
Definition (Formula and Fact Landmark)

Let s be a state of a propositional or FDR planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A **formula landmark** for s is a formula λ over V such that every state path from s to a goal state contains a state s' with $s' \models \lambda$.

If λ is an atomic proposition then λ is a **fact landmark**.

If we talk about landmarks for the initial state, we omit "for I ".


Landmarks: Example

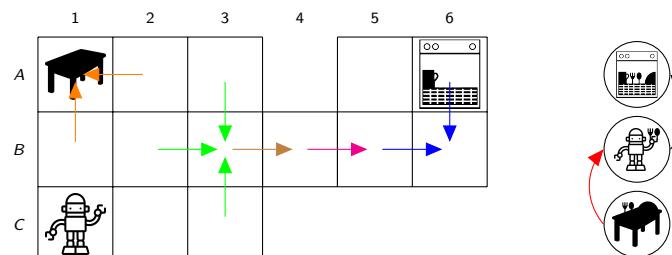
Example

Consider a FDR planning task $\langle V, I, O, \gamma \rangle$ with

- ▶ $V = \{robot-at, dishes-at\}$ with
 - ▶ $\text{dom}(robot-at) = \{A1, \dots, C3, B4, A5, \dots, B6\}$
 - ▶ $\text{dom}(dishes-at) = \{\text{Table}, \text{Robot}, \text{Dishwasher}\}$
- ▶ $I = \{robot-at \mapsto C1, dishes-at \mapsto \text{Table}\}$
- ▶ operators
 - ▶ move- $x-y$ to move from cell x to adjacent cell y
 - ▶ pickup dishes, and
 - ▶ load dishes into the dishwasher.
- ▶ $\gamma = (robot-at = B6) \wedge (dishes-at = \text{Dishwasher})$

Fact and Formula Landmarks: Example

Images from wikipedia


Each fact in gray is a fact landmark:

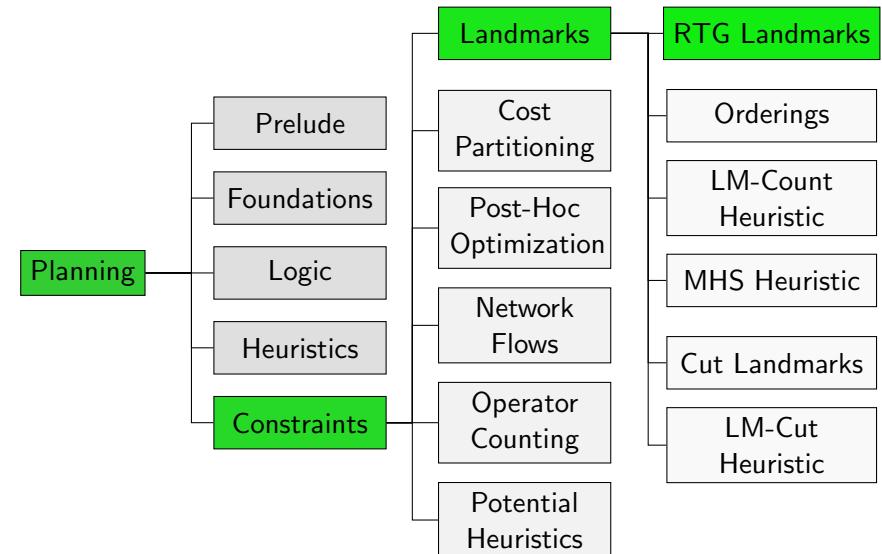
- ▶ $\text{robot-at} = x$ for $x \in \{A1, A6, B3, B4, B5, B6, C1\}$
- ▶ $\text{dishes-at} = x$ for $x \in \{\text{Dishwasher}, \text{Robot}, \text{Table}\}$

Formula landmarks:

- ▶ $\text{dishes-at} = \text{Robot} \wedge \text{robot-at} = B4$
- ▶ $\text{robot-at} = B1 \vee \text{robot-at} = A2$

Disjunctive Action Landmarks: Example

Actions of same color form disjunctive action landmark:


- | | |
|----------------|--|
| ▶ {pickup} | ▶ {move-A6-B6, move-B5-B6} |
| ▶ {load} | ▶ {move-A3-B3, move-B2-B3, move-C3-B3} |
| ▶ {move-B3-B4} | ▶ {move-B1-A1, move-A2-A1} |
| ▶ {move-B4-B5} | ▶ ... |

Remarks

- ▶ Not every landmark is informative. Some examples:
 - ▶ The set of all operators is a disjunctive action landmark unless the initial state is already a goal state.
 - ▶ Every variable that is initially true is a fact landmark.
 - ▶ The goal formula is a formula landmark.
- ▶ Deciding whether a given atomic proposition is a fact landmark is as hard as the plan existence problem.
- ▶ Deciding whether a given operator set is a disjunctive action landmark is as hard as the plan existence problem.
- ▶ Every fact landmark v that is initially false induces a disjunctive action landmark consisting of all operators that possibly make v true.

G2.2 Landmarks from RTGs

Content of this Course

Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the **relaxed task graph**:

- ▶ **RHW landmarks**: Richter, Helmert & Westphal. Landmarks Revisited. (AAAI 2008)
- ▶ **LM-Cut**: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009)
- ▶ **h^m landmarks**: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010)

We will now discuss **h^m landmarks** restricted to to STRIPS planning tasks, starting with $m = 1$.

Incidental Landmarks: Example

Example (Incidental Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$\begin{aligned}
 V &= \{a, b, c, d, e, f\}, \\
 I &= \{a \mapsto T, b \mapsto T, c \mapsto F, d \mapsto F, e \mapsto T, f \mapsto F\}, \\
 o_1 &= \langle \{a\}, \{c, d, e\}, \{b\} \rangle, \\
 o_2 &= \langle \{d, e\}, \{f\}, \{a\} \rangle, \text{ and} \\
 G &= \{e, f\}.
 \end{aligned}$$

Single solution: $\langle o_1, o_2 \rangle$

- ▶ All variables are fact landmarks.
- ▶ Variable b is initially true but irrelevant for the plan.
- ▶ Variable c gets true as “side effect” of o_1 but it is not necessary for the goal or to make an operator applicable.

Causal Landmarks (1)

Definition (Causal Formula Landmark)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a propositional or FDR planning task.

A formula λ over V is a **causal formula landmark** for I if $\gamma \models \lambda$ or if for all plans $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $pre(o_i) \models \lambda$.

Causal Landmarks (2)

Special case: Fact Landmark for STRIPS task

Definition (Causal Fact Landmark)

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task (in set representation).

A variable $v \in V$ is a **causal fact landmark** for I

- ▶ if $v \in G$ or
- ▶ if for all plans $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.

Causal Landmarks: Example

Example (Causal Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$\begin{aligned} V &= \{a, b, c, d, e, f\}, \\ I &= \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{F}, e \mapsto \mathbf{T}, f \mapsto \mathbf{F}\}, \\ o_1 &= \{\{a\}, \{c, d, e\}, \{b\}\}, \\ o_2 &= \{\{d, e\}, \{f\}, \{a\}\}, \text{ and} \\ G &= \{e, f\}. \end{aligned}$$

Single solution: $\langle o_1, o_2 \rangle$

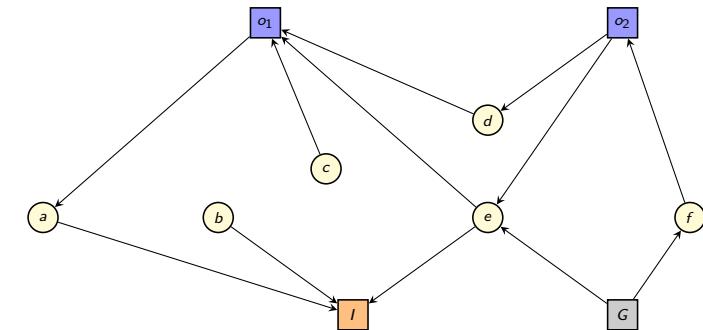
- ▶ All variables are fact landmarks for the initial state.
- ▶ Only a, d, e and f are causal landmarks.

What We Are Doing Next

- ▶ Causal landmarks are the desirable landmarks.
- ▶ We can use the simplified version of RTGs for STRIPS to compute causal landmarks for STRIPS planning tasks.
- ▶ We will define landmarks of AND/OR graphs, ...
- ▶ and show how they can be computed.
- ▶ Afterwards we establish that these are landmarks of the planning task.

Reminder: Simplified Relaxed Task Graph

Definition


For a STRIPS planning task $\Pi = \langle V, I, O, G \rangle$ (in set representation), the **simplified relaxed task graph** $sRTG(\Pi^+)$ is the **AND/OR graph** $\langle N_{\text{and}} \cup N_{\text{or}}, A, \text{type} \rangle$ with

- ▶ $N_{\text{and}} = \{n_o \mid o \in O\} \cup \{v_I, v_G\}$
with $\text{type}(n) = \wedge$ for all $n \in N_{\text{and}}$,
- ▶ $N_{\text{or}} = \{n_v \mid v \in V\}$
with $\text{type}(n) = \vee$ for all $n \in N_{\text{or}}$, and
- ▶ $A = \{\langle n_a, n_o \rangle \mid o \in O, a \in \text{add}(o)\} \cup \{\langle n_o, n_p \rangle \mid o \in O, p \in \text{pre}(o)\} \cup \{\langle n_v, n_I \rangle \mid v \in I\} \cup \{\langle n_G, n_v \rangle \mid v \in G\}$

Like RTG but without extra nodes to support arbitrary conditions.

Simplified RTG: Example

The simplified RTG for our example task is:

Justification

Definition (Justification)

Let $G = \langle N, A, \text{type} \rangle$ be an AND/OR graph.

A subgraph $J = \langle N^J, A^J, \text{type}^J \rangle$ with $N^J \subseteq N$ and $A^J \subseteq A$ and $\text{type}^J = \text{type}|_{N^J}$ **justifies** $n_* \in N$ iff

- ▶ $n_* \in N^J$,
- ▶ $\forall n \in N^J$ with $\text{type}(n) = \wedge$:
 $\forall \langle n, n' \rangle \in A : n' \in N^J$ and $\langle n, n' \rangle \in A^J$
- ▶ $\forall n \in N^J$ with $\text{type}(n) = \vee$:
 $\exists \langle n, n' \rangle \in A : n' \in N^J$ and $\langle n, n' \rangle \in A^J$, and
- ▶ J is acyclic.

“Proves” that n_* is forced true.

Landmarks in AND/OR Graphs

Definition (Landmarks in AND/OR Graphs)

Let $G = \langle N, A, \text{type} \rangle$ be an AND/OR graph.

A node $n \in N$ is a **landmark** for reaching $n_* \in N$ if $n \in V^J$ for all justifications J for n_* .

But: exponential number of possible justifications

Characterizing Equation System

Theorem

Let $G = \langle N, A, \text{type} \rangle$ be an AND/OR graph. Consider the following system of equations:

$$LM(n) = \{n\} \cup \bigcap_{\langle n, n' \rangle \in A} LM(n') \quad \text{type}(n) = \vee$$

$$LM(n) = \{n\} \cup \bigcup_{\langle n, n' \rangle \in A} LM(n') \quad \text{type}(n) = \wedge$$

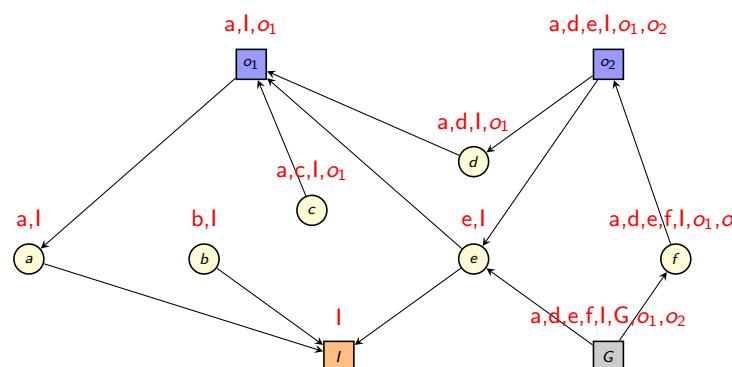
The equation system has a unique maximal solution (maximal with regard to set inclusion), and for this solution it holds that

$n' \in LM(n)$ iff n' is a landmark for reaching n in G .

Computation of Maximal Solution

Theorem

Let $G = \langle N, A, \text{type} \rangle$ be an AND/OR graph. Consider the following system of equations:


$$LM(n) = \{n\} \cup \bigcap_{\langle n, n' \rangle \in A} LM(n') \quad \text{type}(n) = \vee$$

$$LM(n) = \{n\} \cup \bigcup_{\langle n, n' \rangle \in A} LM(n') \quad \text{type}(n) = \wedge$$

The equation system has a unique maximal solution (maximal with regard to set inclusion).

Computation: Initialize landmark sets as $LM(n) = N$ and apply equations as update rules until fixpoint.

Computation: Example

(cf. screen version of slides for step-wise computation)

Relation to Planning Task Landmarks

Theorem

Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task and let \mathcal{L} be the set of landmarks for reaching n_G in $sRTG(\Pi^+)$.

The set $\{v \in V \mid n_v \in \mathcal{L}\}$ is exactly the set of causal fact landmarks in Π^+ .

For operators $o \in O$, if $n_o \in \mathcal{L}$ then $\{o\}$ is a disjunctive action landmark in Π^+ .

There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)

Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)

Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, G \rangle$ with

$$\begin{aligned} V &= \{a, b, c, d, e, f\}, \\ I &= \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{F}, e \mapsto \mathbf{T}, f \mapsto \mathbf{F}\}, \\ o_1 &= \langle \{a\}, \{c, d, e\}, \{b\} \rangle, \\ o_2 &= \langle \{d, e\}, \{f\}, \{a\} \rangle, \text{ and} \\ G &= \{e, f\}. \end{aligned}$$

- ▶ $LM(n_G) = \{a, d, e, f, I, G, o_1, o_2\}$
- ▶ a, d, e , and f are causal fact landmarks of Π^+ .
- ▶ $\{o_1\}$ and $\{o_2\}$ are disjunctive action landmarks of Π^+ .

(Some) Landmarks of Π^+ Are Landmarks of Π

Theorem

Let Π be a STRIPS planning task.

All fact landmarks of Π^+ are fact landmarks of Π and all disjunctive action landmarks of Π^+ are disjunctive action landmarks of Π .

Proof.

Let L be a disjunctive action landmark of Π^+ and π be a plan for Π . Then π is also a plan for Π^+ and, thus, π contains an operator from L .

Let f be a fact landmark of Π^+ . If f is already true in the initial state, then it is also a landmark of Π . Otherwise, every plan for Π^+ contains an operator that adds f and the set of all these operators is a disjunctive action landmark of Π^+ . Therefore, also each plan of Π contains such an operator, making f a fact landmark of Π . \square

Not All Landmarks of Π^+ are Landmarks of Π

Example

Consider STRIPS task $\langle \{a, b, c\}, \emptyset, \{o_1, o_2\}, \{c\} \rangle$ with $o_1 = \langle \{\}, \{a\}, \{\}, 1 \rangle$ and $o_2 = \langle \{a\}, \{c\}, \{a\}, 1 \rangle$.

$a \wedge c$ is a formula landmark of Π^+ but not of Π .

G2.3 Landmarks from Π^m

Reminder: Π^m Compilation

Definition (Π^m)

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task.

For $m \in \mathbb{N}_1$, the task Π^m is the STRIPS planning task

$\langle V^m, I^m, O^m, G^m \rangle$, where

$O^m = \{a_{o,S} \mid o \in O, S \subseteq V, |S| < m, S \cap (add(o) \cup del(o)) = \emptyset\}$

with

- ▶ $pre(a_{o,S}) = (pre(o) \cup S)^m$
- ▶ $add(a_{o,S}) = \{v_Y \mid Y \subseteq add(o) \cup S, |Y| \leq m, Y \cap add(o) \neq \emptyset\}$
- ▶ $del(a_{o,S}) = \emptyset$
- ▶ $cost(a_{o,S}) = cost(o)$

Landmarks from the Π^m Compilation (1)

Idea:

- ▶ Π^m is delete-free, so we can compute all causal (meta-)fact landmarks from the AND/OR graph.
- ▶ These landmarks correspond to formula landmarks of the original problem.

Landmarks from the Π^m Compilation (2)

Theorem

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task.

If meta-variable v_S is a fact landmark for I^m in Π^m then $\bigwedge_{v \in S} v$ is a formula landmark for I in Π .

(Proof omitted.)

Π^m Landmarks: Example

Consider again our running example:

Example

STRIPS planning task $\Pi = \langle V, I, \{o_1, o_2\}, G \rangle$ with

$$\begin{aligned} V &= \{a, b, c, d, e, f\}, \\ I &= \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{F}, e \mapsto \mathbf{T}, f \mapsto \mathbf{F}\}, \\ o_1 &= \langle \{a\}, \{c, d, e\}, \{b\} \rangle, \\ o_2 &= \langle \{d, e\}, \{f\}, \{a\} \rangle, \text{ and} \\ G &= \{e, f\}. \end{aligned}$$

Meta-variable $v_{\{d, e\}}$ is a causal fact landmark for I^2 in Π^2 , so $d \wedge e$ is a causal formula landmark for Π .

Landmarks from the Π^m Compilation (3)

Theorem

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task. For $m \in \mathbb{N}_1$ let $\mathcal{L}^m = \{\wedge_{v \in C} v \mid C \subseteq V, v_C \text{ is a causal fact landmark of } \Pi^m\}$ be the set of formula landmarks derived from Π^m .

Let λ be a conjunction over V that is a causal formula landmark of Π . For sufficiently large m , \mathcal{L}^m contains λ' with $\lambda' \equiv \lambda$.

(Proof omitted.)

~ can find all causal conjunctive formula landmarks

Π^m Landmarks: Discussion

- ▶ With the Π^m compilation, we can find causal fact landmarks of Π that are not causal fact landmarks of Π^+ .
- ▶ In addition we can find conjunctive formula landmarks.
- ▶ The approach takes to some extent delete effects into account.
- ▶ However, the approach takes exponential time in m .
- ▶ Even for small m , the additional cost for computing the landmarks often outweighs the time saved from better heuristic guidance.

G2.4 Summary

Summary

- ▶ **Fact landmark:** atomic proposition that is true in each state path to a goal
- ▶ **Disjunctive action landmark:** set L of operators such that every plan uses some operator from L
- ▶ We can **efficiently compute all causal fact landmarks** of a delete-free STRIPS task from the (simplified) RTG.
- ▶ Fact landmarks of the delete relaxed task are also landmarks of the original task.
- ▶ We can use the Π^m compilation to find **more landmarks**.