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Heuristic for Forward or Backward Search? (1)

Any heuristic can be used for both, forward and backward search:

Let hf be a forward search heuristic (as in earlier chapters).
We can use it to get estimate for state S in backward search
on task (V , I ,O,G ), computing hf (I ) on task (V , I ,O, S).

We also can use a backward search heuristic hb in forward
search on task (V , I ,O,G ), determining estimate for state s
as hb(G ) on task (V , s,O,G ).
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Heuristic for Forward or Backward Search? (2)

We defined hm so that it can directly be used for both directions
on task (V , I ,O,G ) as

hmf (s) := hm(s,G ) for forward search, or

hmb (S) := hm(I ,S) for backward search.

Precomputation determines hm(s,B) for all B ⊆ V with |B| ≤ m.

For hmf , we can only use these values for a single heuristic
evaluation, because the state s changes.

For hmb , we can re-use these values and all subsequent
heuristic evaluations are quite cheap.

→ hm better suited for backward search
→ We examine it in the following in this context.
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Heuristic Properties (1)

Theorem

Let Π = ⟨V , I ,O,G ⟩ be a STRIPS planning tasks and S ⊆ V be a
backward search state. Then hmb (S) := hm(I , S) is a safe,
goal-aware, consistent, and admissible heuristic for Π.

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: S is a goal state iff S ⊆ I . Then
hmb (S) = hm(I , S) = 0. . . .
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Heuristic Properties (2)

Proof (continued).

Consistency: Assume hmb is not consistent, i.e., there is a state S
and an operator o, where R := sregr(S , o) ̸= ⊥ such that
hmb (S) > cost(o) + hmb (R).

Then hmb (S) = hm(I , S) and there is S ′ ⊆ S with |S ′| ≤ m and
hm(I ,S ′) = hm(I ,S): if |S | ≤ m, choose S ′ = S , otherwise choose
any maximizing subset from the last hm equation.

As S ′ ⊆ S and sregr(S , o) ̸= ⊥, also R ′ := sregr(S ′, o) ̸= ⊥ and
(R ′, o) ∈ R(S ′,O). This gives hm(I ,S ′) ≤ cost(o) + hm(I ,R ′).

As S ′ ⊆ S , it holds that R ′ ⊆ R and hm(I ,R ′) ≤ hm(I ,R).

Overall, we get hmb (S) = hm(I ,S) = hm(I , S ′) ≤
cost(o)+hm(I ,R ′) ≤ cost(o)+hm(I ,R) = cost(o)+hmb (R). �
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Heuristic Properties (3)

Theorem

For m,m′ ∈ N1 with m < m′ it holds that hm ≤ hm
′
.

(Proof omitted.)
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Heuristic Properties (4)

Theorem

Let Π = ⟨V , I ,O,G ⟩ be a STRIPS planning task.
For a sufficiently large m, it holds that hm = r∗ on Π.

Proof Sketch.

It is easy to check that for m = |V | the heuristic definition of hm

can be simplified so that it becomes the definition of r∗.
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Πm Compilation
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Πm Compilation: Motivation

We have seen that h1 = hmax and that hmax corresponds to
the cost of a critical path in the relaxed task graph.

What about m > 1?

Πm compilation derives for a given m a task Πm

from the original task Π.

hm corresponds to cost of critical path
in the relaxed task graph of Πm.

→ Better understanding of hm

→ Also interesting in the context of landmark heuristics
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Idea of Πm Compilation

hmax only considers variables individually.

For example, it cannot detect that a goal {a, b} is
unreachable from the empty set if every action that adds a
deletes b and vice versa.

Idea: Use meta-variable v{a,b} to capture such interactions.

Intuitively v{a,b} is reachable in Πm if a state where a and b
are both true would be reachable in Π when only capturing
interactions of at most m variables.
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Some Notation

For a set X of variables and m ∈ N1 we define
Xm := {vY | Y ⊆ X , |Y | ≤ m}.
Example: {a, b, c}2 = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
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Πm Compilation

Definition (Πm)

Let Π = ⟨V , I ,O,G ⟩ be a STRIPS planning task.
For m ∈ N1, the task Πm is the STRIPS planning task
⟨Vm, Im,Om,Gm⟩, where
Om = {ao,S | o ∈ O,S ⊆ V , |S | < m,S ∩ (add(o) ∪ del(o)) = ∅}
with

pre(ao,S) = (pre(o) ∪ S)m

add(ao,S) = {vY | Y ⊆ add(o) ∪ S , |Y | ≤ m,Y ∩ add(o) ̸= ∅}
del(ao,S) = ∅
cost(ao,S) = cost(o)
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Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, . . . , . . . , . . . ⟩
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Πm for Running Example with m = 2
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Πm for Running Example with m = 2
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Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm: Properties

Theorem (hmΠ = hmax
Πm )

Let Π be a STRIPS planning task and m ∈ N1.

Then for each state s of Π it holds that hmΠ (s) = hmax
Πm (sm),

where the subscript denotes on which task the heuristic is
computed.

(Proof omitted.)
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Can we in general compute an admissible heuristic on Πm

and get admissible estimates for Π? ; No!

Theorem

There are STRIPS planning tasks Π, m ∈ N1 and admissible
heuristics h such that h∗Π(s) < hΠm(sm) for some state s of Π.

(Proof omitted.)

Intuition: we may need separate copies of the same action
to achieve different meta-fluents
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ΠC Compilation
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Outlook: ΠC and ΠC
ce Compilation

Πm (and hm) must consider all subsets up to size m.

h∗Πm is in general not admissible for Π.

The compilation ΠC is defined for a set C of atom sets.

C can contain arbitrary subsets of arbitrary size.
Task ΠC is again delete-free.
h+
ΠC = h∗ΠC is admissible for Π.

The task representation is exponential in |C | (one action copy
for every set of meta-variables the action can make true).

ΠC
ce is an alternative to ΠC using conditional effects

ΠC
ce can be exponentially smaller (in |C |) than ΠC .

h+
ΠC dominates h+

ΠC
ce
for set C of non-unit sets.
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Summary
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Summary

hm heuristics are best suited for backward search.

hm heuristics are safe, goal aware, consistent and admissible.

The Πm compilation explicitly represents sets
(=̂ conjunctions) of variables as meta-variables.

hmΠ (s) = hmax
Πm (sm)

The ideas underlying the Πm compilation have been
generalized to the ΠC and ΠC

ce compilation.
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