
Planning and Optimization
F2. Critical Path Heuristics: Properties and Πm Compilation

Malte Helmert and Gabriele Röger

Universität Basel

November 23, 2022

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Content of this Course

Planning

Prelude

Foundations

Logic

Heuristics

Delete
Relaxation

Abstraction

Critical
Paths

hm Heuristic

Πm Compilation
Constraints

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Heuristic Properties

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Heuristic for Forward or Backward Search? (1)

Any heuristic can be used for both, forward and backward search:

Let hf be a forward search heuristic (as in earlier chapters).
We can use it to get estimate for state S in backward search
on task (V , I ,O,G), computing hf (I) on task (V , I ,O, S).

We also can use a backward search heuristic hb in forward
search on task (V , I ,O,G), determining estimate for state s
as hb(G) on task (V , s,O,G).

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Heuristic for Forward or Backward Search? (1)

Any heuristic can be used for both, forward and backward search:

Let hf be a forward search heuristic (as in earlier chapters).
We can use it to get estimate for state S in backward search
on task (V , I ,O,G), computing hf (I) on task (V , I ,O, S).

We also can use a backward search heuristic hb in forward
search on task (V , I ,O,G), determining estimate for state s
as hb(G) on task (V , s,O,G).

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Heuristic for Forward or Backward Search? (2)

We defined hm so that it can directly be used for both directions
on task (V , I ,O,G) as

hmf (s) := hm(s,G) for forward search, or

hmb (S) := hm(I ,S) for backward search.

Precomputation determines hm(s,B) for all B ⊆ V with |B| ≤ m.

For hmf , we can only use these values for a single heuristic
evaluation, because the state s changes.

For hmb , we can re-use these values and all subsequent
heuristic evaluations are quite cheap.

→ hm better suited for backward search
→ We examine it in the following in this context.

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Heuristic Properties (1)

Theorem

Let Π = ⟨V , I ,O,G ⟩ be a STRIPS planning tasks and S ⊆ V be a
backward search state. Then hmb (S) := hm(I , S) is a safe,
goal-aware, consistent, and admissible heuristic for Π.

Proof.

We prove goal-awareness and consistency, the other properties
follow from these two.

Goal-awareness: S is a goal state iff S ⊆ I . Then
hmb (S) = hm(I , S) = 0. . . .

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Heuristic Properties (2)

Proof (continued).

Consistency: Assume hmb is not consistent, i.e., there is a state S
and an operator o, where R := sregr(S , o) ̸= ⊥ such that
hmb (S) > cost(o) + hmb (R).

Then hmb (S) = hm(I , S) and there is S ′ ⊆ S with |S ′| ≤ m and
hm(I ,S ′) = hm(I ,S): if |S | ≤ m, choose S ′ = S , otherwise choose
any maximizing subset from the last hm equation.

As S ′ ⊆ S and sregr(S , o) ̸= ⊥, also R ′ := sregr(S ′, o) ̸= ⊥ and
(R ′, o) ∈ R(S ′,O). This gives hm(I ,S ′) ≤ cost(o) + hm(I ,R ′).

As S ′ ⊆ S , it holds that R ′ ⊆ R and hm(I ,R ′) ≤ hm(I ,R).

Overall, we get hmb (S) = hm(I ,S) = hm(I , S ′) ≤
cost(o)+hm(I ,R ′) ≤ cost(o)+hm(I ,R) = cost(o)+hmb (R). �

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Heuristic Properties (3)

Theorem

For m,m′ ∈ N1 with m < m′ it holds that hm ≤ hm
′
.

(Proof omitted.)

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Heuristic Properties (4)

Theorem

Let Π = ⟨V , I ,O,G ⟩ be a STRIPS planning task.
For a sufficiently large m, it holds that hm = r∗ on Π.

Proof Sketch.

It is easy to check that for m = |V | the heuristic definition of hm

can be simplified so that it becomes the definition of r∗.

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm Compilation

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Content of this Course

Planning

Prelude

Foundations

Logic

Heuristics

Delete
Relaxation

Abstraction

Critical
Paths

hm Heuristic

Πm Compilation
Constraints

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm Compilation: Motivation

We have seen that h1 = hmax and that hmax corresponds to
the cost of a critical path in the relaxed task graph.

What about m > 1?

Πm compilation derives for a given m a task Πm

from the original task Π.

hm corresponds to cost of critical path
in the relaxed task graph of Πm.

→ Better understanding of hm

→ Also interesting in the context of landmark heuristics

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Idea of Πm Compilation

hmax only considers variables individually.

For example, it cannot detect that a goal {a, b} is
unreachable from the empty set if every action that adds a
deletes b and vice versa.

Idea: Use meta-variable v{a,b} to capture such interactions.

Intuitively v{a,b} is reachable in Πm if a state where a and b
are both true would be reachable in Π when only capturing
interactions of at most m variables.

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Some Notation

For a set X of variables and m ∈ N1 we define
Xm := {vY | Y ⊆ X , |Y | ≤ m}.
Example: {a, b, c}2 = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm Compilation

Definition (Πm)

Let Π = ⟨V , I ,O,G ⟩ be a STRIPS planning task.
For m ∈ N1, the task Πm is the STRIPS planning task
⟨Vm, Im,Om,Gm⟩, where
Om = {ao,S | o ∈ O,S ⊆ V , |S | < m,S ∩ (add(o) ∪ del(o)) = ∅}
with

pre(ao,S) = (pre(o) ∪ S)m

add(ao,S) = {vY | Y ⊆ add(o) ∪ S , |Y | ≤ m,Y ∩ add(o) ̸= ∅}
del(ao,S) = ∅
cost(ao,S) = cost(o)

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, . . . , . . . , . . . ⟩

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}

I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, . . . , . . . , . . . ⟩

V = {a, b, c}
V ′ = V 2 = {vY | Y ⊆ V , |Y | ≤ 2}

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}

G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, . . . , . . . , . . . ⟩

I = {a}
I ′ = I 2 = {vY | Y ⊆ I , |Y | ≤ 2}

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}

O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, . . . , . . . , . . . ⟩

G = {a, b, c}
G ′ = G 2 = {vY | Y ⊆ G , |Y | ≤ 2}

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, . . . , . . . , . . . ⟩

o1 = ⟨{a, b}, {c}, {b}, 1⟩
o2 = ⟨{a}, {b}, {a}, 2⟩
o3 = ⟨{b}, {a}, ∅, 2⟩
O ′ = {ao,S | o ∈ O, S ⊆ V , |S | < m, S ∩ (add(o) ∪ del(o)) = ∅}

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, . . . , . . . , . . . ⟩

o3 = ⟨{b}, {a}, ∅, 2⟩
pre(ao,S) = (pre(o) ∪ S)2

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, {v{a}, v{a,c}}, . . . , . . . ⟩

o3 = ⟨{b}, {a}, ∅, 2⟩
add(ao,S) = {vY | Y ⊆ add(o) ∪ S , |Y | ≤ m,Y ∩ add(o) ̸= ∅}

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, {v{a}, v{a,c}}, ∅, . . . ⟩

o3 = ⟨{b}, {a}, ∅, 2⟩
del(ao,S) = ∅

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm for Running Example with m = 2

For running example Π we get Π2 = ⟨V ′, I ′,O ′,G ′⟩, where

V ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
I ′ = {v∅, v{a}}
G ′ = {v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}}
O ′ = {ao1,∅, ao1,{a}, ao2,∅, ao2,{c}, ao3,∅, ao3,{b}, ao3,{c}}

with (for example)
ao3,{c} = ⟨{v∅, v{b}, v{c}, v{b,c}}, {v{a}, v{a,c}}, ∅, 2⟩

o3 = ⟨{b}, {a}, ∅, 2⟩
cost(ao,S) = cost(o)

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Πm: Properties

Theorem (hmΠ = hmax
Πm)

Let Π be a STRIPS planning task and m ∈ N1.

Then for each state s of Π it holds that hmΠ (s) = hmax
Πm (sm),

where the subscript denotes on which task the heuristic is
computed.

(Proof omitted.)

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Can we in general compute an admissible heuristic on Πm

and get admissible estimates for Π? ; No!

Theorem

There are STRIPS planning tasks Π, m ∈ N1 and admissible
heuristics h such that h∗Π(s) < hΠm(sm) for some state s of Π.

(Proof omitted.)

Intuition: we may need separate copies of the same action
to achieve different meta-fluents

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

ΠC Compilation

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Outlook: ΠC and ΠC
ce Compilation

Πm (and hm) must consider all subsets up to size m.

h∗Πm is in general not admissible for Π.

The compilation ΠC is defined for a set C of atom sets.

C can contain arbitrary subsets of arbitrary size.
Task ΠC is again delete-free.
h+
ΠC = h∗ΠC is admissible for Π.

The task representation is exponential in |C | (one action copy
for every set of meta-variables the action can make true).

ΠC
ce is an alternative to ΠC using conditional effects

ΠC
ce can be exponentially smaller (in |C |) than ΠC .

h+
ΠC dominates h+

ΠC
ce
for set C of non-unit sets.

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Outlook: ΠC and ΠC
ce Compilation

Πm (and hm) must consider all subsets up to size m.

h∗Πm is in general not admissible for Π.

The compilation ΠC is defined for a set C of atom sets.

C can contain arbitrary subsets of arbitrary size.
Task ΠC is again delete-free.
h+
ΠC = h∗ΠC is admissible for Π.

The task representation is exponential in |C | (one action copy
for every set of meta-variables the action can make true).

ΠC
ce is an alternative to ΠC using conditional effects

ΠC
ce can be exponentially smaller (in |C |) than ΠC .

h+
ΠC dominates h+

ΠC
ce
for set C of non-unit sets.

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Outlook: ΠC and ΠC
ce Compilation

Πm (and hm) must consider all subsets up to size m.

h∗Πm is in general not admissible for Π.

The compilation ΠC is defined for a set C of atom sets.

C can contain arbitrary subsets of arbitrary size.
Task ΠC is again delete-free.
h+
ΠC = h∗ΠC is admissible for Π.

The task representation is exponential in |C | (one action copy
for every set of meta-variables the action can make true).

ΠC
ce is an alternative to ΠC using conditional effects

ΠC
ce can be exponentially smaller (in |C |) than ΠC .

h+
ΠC dominates h+

ΠC
ce
for set C of non-unit sets.

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Summary

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Summary

hm heuristics are best suited for backward search.

hm heuristics are safe, goal aware, consistent and admissible.

The Πm compilation explicitly represents sets
(=̂ conjunctions) of variables as meta-variables.

hmΠ (s) = hmax
Πm (sm)

The ideas underlying the Πm compilation have been
generalized to the ΠC and ΠC

ce compilation.

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Literature

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Literature (1)

References on critical path heuristics:

Patrik Haslum and Hector Geffner.
Admissible Heuristics for Optimal Planning.
Proc. AIPS 2000, pp. 140–149, 2000.
Introduces hm heuristics.

Patrik Haslum.
hm(P) = h1(Pm): Alternative Characterisations of the
Generalisation From hmax to hm.
Proc. ICAPS 2009, pp. 354–357, 2009.
Introduces Πm compilation.

Heuristic Properties Πm Compilation ΠC Compilation Summary Literature

Literature (2)

Patrik Haslum.
Incremental Lower Bounds for Additive Cost Planning
Problems.
Proc. ICAPS 2012, pp. 74–82, 2012.
Introduces ΠC compilation.

Emil Keyder, Jörg Hoffmann and Patrik Haslum.
Improving Delete Relaxation Heuristics Through Explicitly
Represented Conjunctions.
JAIR 50, pp. 487–533, 2014.
Introduces ΠC

ce compilation.

	Heuristic Properties
	

	m Compilation
	

	C Compilation
	

	Summary
	

	Literature
	

