
Planning and Optimization
F1. Critical Path Heuristics: hm

Malte Helmert and Gabriele Röger
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In This (and the Next) Chapter. . .

▶ . . . we consider only STRIPS, and . . .

▶ . . . we focus on backward search and regression.
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Set Representation of STRIPS Planning Tasks

For a more convenient notation, we will use a set representation of
STRIPS planning task. . .

Three differences:

▶ Represent conjunctions of variables as sets of variables.

▶ Use two sets to represent add and delete effects of operators
separately.

▶ Represent states as sets of the true variables.
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Reminder: STRIPS Operators in Set Representation

▶ Every STRIPS operator is of the form

⟨v1 ∧ · · · ∧ vp, a1 ∧ · · · ∧ aq ∧ ¬d1 ∧ · · · ∧ ¬dr , c⟩

where vi , aj , dk are state variables and c is the cost.
▶ The same operator o in set representation is

⟨pre(o), add(o), del(o), cost(o)⟩, where
▶ pre(o) = {v1, . . . , vp} are the preconditions,
▶ add(o) = {a1, . . . , aq} are the add effects,
▶ del(o) = {d1, . . . , dr} are the delete effects, and
▶ cost(o) = c is the operator cost.

▶ Since STRIPS operators must be conflict-free,
add(o) ∩ del(o) = ∅
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STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple
⟨V , I ,O,G ⟩, where
▶ V is a finite set of state variables,

▶ I ⊆ V is the initial state,

▶ O is a finite set of STRIPS operators in set representation,

▶ G ⊆ V is the goal.

The corresponding planning task in the previous notation is
⟨V , I ′,O ′, γ⟩, where
▶ I ′(v) = T iff v ∈ I ,

▶ O ′ = {⟨
∧

v∈pre(o)
v ,

∧
v∈add(o)

v ∧
∧

v∈del(o)
¬v , cost(o)⟩ | o ∈ O},

▶ γ =
∧
v∈G

v .
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Reminder: STRIPS Regression

Definition (STRIPS Regression)

Let φ = φ1 ∧ · · · ∧ φn be a conjunction of atoms, and let o be a
STRIPS operator which adds the atoms a1, . . . , ak and deletes the
atoms d1, . . . , dl .

The STRIPS regression of φ with respect to o is

sregr(φ, o) :=

{
⊥ if φi = dj for some i , j

pre(o) ∧
∧
({φ1, . . . , φn} \ {a1, . . . , ak}) else

Note: sregr(φ, o) is again a conjunction of atoms, or ⊥.
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STRIPS Regression in Set Representation

Definition (STRIPS Regression)

Let A be a set of atoms, and let o be a STRIPS operator
o = ⟨pre(o), add(o), del(o), cost(o)⟩.

The STRIPS regression of A with respect to o is

sregr(A, o) :=

{
⊥ if A ∩ del(o) ̸= ∅
pre(o) ∪ (A \ add(o)) otherwise

Note: sregr(A, o) is again a set of atoms, or ⊥.
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F1.2 Perfect Regression Heuristic
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Perfect Regression Heuristic

Definition (Perfect Regression Heuristic)

For a STRIPS planning task ⟨V , I ,O,G ⟩ the perfect regression
heuristic r∗ for state s and variable set A ⊆ V is defined as the
(point-wise) greatest fixed-point solution of the equations:

r∗(s,A) = 0 if A ⊆ s

r∗(s,A) = min
(B,o)∈R(A,O)

[cost(o) + r∗(s,B)] otherwise

R(A,O) = {(B, o) | o ∈ O,B = sregr(A, o) ̸= ⊥}
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Perfect Regression Heuristic r ∗ vs. Perfect Heuristic h∗

Theorem

For a STRIPS planning task ⟨V , I ,O,G ⟩ it holds for each state s
that h∗(s) = r∗(s,G ).

Intuition: We can extract a path from the operators in the
Intuition: minimizing pairs (B, o), starting from the goal.

⇝ r∗ cannot be computed efficiently.
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F1.3 Critical Path Heuristics
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Running Example

We will use the following running example throughout this chapter:

Π = ⟨V , I , {o1, o2, o3},G ⟩ with

V = {a, b, c}
I = {a}

o1 = ⟨{a, b}, {c}, {b}, 1⟩
o2 = ⟨{a}, {b}, {a}, 2⟩
o3 = ⟨{b}, {a}, ∅, 2⟩
G = {a, b, c}

Optimal plan o2, o3, o1, o2, o3 has cost 9.
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Simplified Relaxed Task Graph

Definition

For a STRIPS planning task Π = ⟨V , I ,O, γ⟩, the simplified
relaxed task graph sRTG(Π+) is the AND/OR graph
⟨Nand ∪ Nor,A, type⟩ with
▶ Nand = {no | o ∈ O} ∪ {vI , vG}

with type(n) = ∧ for all n ∈ Nand,

▶ Nor = {nv | v ∈ V }
with type(n) = ∨ for all n ∈ Nor, and

▶ A = {⟨na, no⟩ | o ∈ O, a ∈ add(o)} ∪
E = {⟨no , np⟩ | o ∈ O, p ∈ pre(o)} ∪
E = {⟨nv , nI ⟩ | v ∈ I} ∪
E = {⟨nG , nv ⟩ | v ∈ γ}

Like RTG but without extra nodes to support arbitrary conditions.
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hmax in Simplified RTG

a b c0 2 3

I0 o1

+1

3

o2

+2
2 o3

+2
4

G3

The critical path justifies the heuristic estimate hmax(I ) = 3
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hmax as Critical Path Heuristic

Definition (hmax Heuristic)

For a STRIPS planning task ⟨V , I ,O,G ⟩ the heuristic hmax for
state s and variable set A ⊆ V is defined as the (point-wise)
greatest fixed-point solution of hmax(s,A) =
0 if A ⊆ s

min(B,o)∈R(A,O)[cost(o) + hmax(s,B)] if |A| ≤ 1 and A ̸⊆ s

maxv∈A hmax(s, {v}) otherwise

R(A,O) = {⟨B, o⟩ | o ∈ O,B = sregr(A, o) ̸= ⊥}

Estimate r∗(s,A) as cost of most expensive v ∈ A.

For STRIPS tasks, this definition specifies the same heuristic hmax

as in the chapter on relaxation heuristics.
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Critical Path Heuristics

Definition (hm Heuristics)

For a STRIPS planning task ⟨V , I ,O,G ⟩ and m ∈ N1 the
heuristic hm for state s and variable set A ⊆ V is defined as the
(point-wise) greatest fixed-point solution of
hm(s,A) =
0 if A ⊆ s

min⟨B,o⟩∈R(A,O)[cost(o) + hm(s,B)] if |A| ≤ m and A ̸⊆ s

maxB⊆A,1≤|B|≤m hm(s,B) otherwise

R(A,O) = {⟨B, o⟩ | o ∈ O,B = sregr(A, o) ̸= ⊥}

Estimate r∗(s,A) as cost of most expensive B ⊆ A with |B| ≤ m.
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F1.4 Computation
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Critical Path Heuristics: Computation

Definition (hm Heuristics)

For a STRIPS planning task ⟨V , I ,O,G ⟩ and m ∈ N1 the heuristic
hm for state s and variable set A ⊆ V is defined as the
(point-wise) greatest fixed-point solution of
hm(s,A) =
0 if A ⊆ s

min(B,o)∈R(A,O)[cost(o) + hm(s,B)] if |A| ≤ m and A ̸⊆ s

maxB⊆A,1≤|B|≤m hm(s,B) otherwise

R(A,O) = {⟨B, o⟩ | o ∈ O,B = sregr(A, o) ̸= ⊥}

Cheap to evaluate given hm(s,B) for all B ⊆ V with 1 ≤ |B| ≤ m.
We precompute these values.
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hm Precomputation (1)

For value m and state s of task with variables V and operators O

Computing hm Values for Variable Sets up to Size m

S := {A ⊆ V | |A| ≤ m}
Associate a cost attribute with each set A ∈ S .
for all sets A ∈ S :

if A ⊆ s then A.cost := 0
else A.cost := ∞

while no fixed point is reached:
Choose a variable set A from S .
newcost := min⟨B,o⟩∈R(A,O)[cost(o) + currentcost(B,S)]
if newcost < A.cost then A.cost := newcost

currentcost(B,S)

if |B| ≤ m then return B.cost else return maxA∈S,A⊆B A.cost
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hm Precomputation (2)

▶ Fixed point reached ⇒ A.cost = hm(s,A) for all A ∈ S .
▶ Intuition:

▶ cost values satisfy hm equations, and
▶ no larger values can satisfy the equations: initialized to ∞ and

values are only reduced if it is otherwise impossible to satisfy
an equation.

▶ With suitable data structures, we can choose A in each
iteration so that it directly gets assigned its final value
(Generalized Dijkstra’s algorithm).

▶ With such a strategy, the runtime is polynomial for fixed m.

▶ Runtime is exponential in m ⇝ hm typically used with m ≤ 3
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Example with m = 1 to Initial State

R({a}, {o1, o2, o3}) = {({a, b}, o1), ({b}, o3)}
R({b}, {o1, o2, o3}) = {({a}, o2), ({b}, o3)}
R({c}, {o1, o2, o3}) = {({a, b}, o1), ({a, c}, o2), ({b, c}, o3)}

{a} {b} {c}
cost 0 2 3

{b}: min{2 + {a}.cost, 2 + {b}.cost} = 2
{c}: min{1 + max{{a}.cost, {b}.cost},

2 + max{{a}.cost, {c}.cost},
2 + max{{b}.cost, {c}.cost}} = 3
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Example with m = 1 to Initial State

{a} {b} {c}
cost 0 2 3

{b}: min{2 + {a}.cost, 2 + {b}.cost} = 2
{c}: min{1 + max{{a}.cost, {b}.cost},

2 + max{{a}.cost, {c}.cost},
2 + max{{b}.cost, {c}.cost}} = 3

Fixed point reached

h1(I , {a, b, c}) = max{h1(I , {a}), h1(I , {b}), h1(I , {c})}
= max{0, 2, 3} = 3
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Example with m = 2 to Initial State

{a} {b} {c} {a, b} {a, c} {b, c}
cost 0 2 5 4 5 7

{b}: min{2 + {a}.cost, 2 + {b}.cost} = 2
{a, b}: min{2 + {b}.cost} = 4
{c}: min{1 + {a, b}.cost, 2 + {a, c}.cost, 2 + {b, c}.cost} = 5

{a, c}: min{1 + {a, b}.cost, 2 + {b, c}.cost} = 5
{b, c}: min{2 + {a, c}.cost, 2 + {b, c}.cost} = 7

h2(I , {a, b, c}) = max{h2(I , {a}), h2(I , {b}), h2(I , {c})}
h2(I , {a, b}), h2(I , {a, c}), h2(I , {b, c})}

= max{0, 2, 5, 4, 5, 7} = 7

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 23, 2022 27 / 29

F1. Critical Path Heuristics: hm Summary

F1.5 Summary
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Summary

▶ Critical path heuristic hm estimates the cost of reaching a set
(=̂ conjunction) of variables as the cost of reaching the most
expensive subset of size at most m.

▶ hm computation is polynomial for fixed m.

▶ hm computation is exponential in m.

▶ In practice, we use m ∈ {1, 2, 3}.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 23, 2022 29 / 29


	Set Representation
	

	Perfect Regression Heuristic
	

	Critical Path Heuristics
	

	Computation
	

	Summary
	


