Planning and Optimization

E12. Merge-and-Shrink: Merging Strategies and Label
Reduction

Malte Helmert and Gabriele Roger

Universitat Basel

November 21, 2022

Content of this Course

Prelude
Foundations

Logic

Constraints

Content of this Course: Heuristics

Abstractions

Delete Relaxation ‘ .
in General

Abstraction Pattern
Databases

Critical Paths Merge & Shrink
© Landmarks
.................. Network

Constraints -

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ Flows
""""" Potential

Heuristics

Merging Strategies

®00000

Merging Strategies

Merging Strategies o e Summary

0O@0000

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F()
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\{T1, 2}) U{TL ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F=(F\{T}Hu{T"}

return the remaining factor 7% in F

Remaining Question:
m Which abstractions to select for merging? ~» merging strategy

Merging Strategies
00000

Merge-and-Shrink

Merge & Shrink }7

Prunin

_{

Synchronized Product

—{ Factored Transition Systems ‘

— Merge & Shrink Algorithm |

—{ Heuristic Representation ‘

Heuristic Properties

Strategies

Label Reduction

1L L

Pruning

Merging Strategies . ” g iterature Summar

[e]e]e] le]e}

Linear Merging Strategies

Linear Merging Strategy

In each iteration after the first, choose the abstraction computed
in the previous iteration as 7.

Rationale: only maintains one “complex” abstraction at a time

~> Fully defined by an ordering of atomic projections.

Merging Strategies
0000e0

Linear Merging Strategies: Choosing the Ordering

Use similar causal graph criteria as for growing patterns.

Example: Strategy of hypn

hynny: Ordering of atomic projections

m Start with a goal variable.

m Add variables that appear in preconditions of operators
affecting previous variables.

m If that is not possible, add a goal variable.

Rationale: increases h quickly

Merging Strategies a R g e e Summary

00000

Non-linear Merging Strategies

m Non-linear merging strategies only recently gained more
interest in the planning community.

m One reason: Better label reduction techniques (later in this
chapter) enabled a more efficient computation.
m Examples:
m DFP: preferrably merge transition systems that must
synchronize on labels that occur close to a goal state.
m UMC and MIASM: Build clusters of variables with strong
interactions and first merge variables within each cluster.
m Each merge-and-shrink heuristic computed with a non-linear
merging strategy can also be computed with a linear merging
strategy.

m However, linear merging can require a super-polynomial
blow-up of the final representation size.

Label Reduction
©000000000000

Label Reduction

Vler Strategies Label Reduction

Merge-and-Shrink

Merge & Shrink }7

O@00000000000

Prunin

_{

Synchronized Product

—{ Factored Transition Systems ‘

— Merge & Shrink Algorithm |

—{ Heuristic Representation ‘

Heuristic Properties

Strategies

Label Reduction

I

Pruning

Strategies Label Reduction
) 00®0000000000

Label Reduction: Motivation (1)

T 0,0 ,p,p',q

Whenever there is a transition with label o’ there is also a

transition with label o. If 0/ is not cheaper than o, we can always
use the transition with o.

Idea: Replace o and o’ with label o” with cost of o

Strategies Label Reduction

000@000000000

o",p,p'q

7'/

States s and t are not bisimilar due to labels p and p’. In 77 they
label the same (parallel) transitions. If p and p’ have the same
cost, in such a situation there is no need for distinguishing them.

Idea: Replace p and p’ with label p” with same cost.

Label Reduction
0000®00000000

1" /!
oL,p,q

T

Label reductions reduce the time and memory requirement for
merge and shrink steps and enable coarser bisimulation
abstractions.

When is label reduction a conservative transformation?

Summar

Label Reduction

O000OOe0000000 00000 > 00000

Label Reduction: Definition

Definition (Label Reduction)

Let F be a factored transition system with label set L and label
cost function c¢. A label reduction (A, ¢’) for F is given by a
function A\ : L — L', where L’ is an arbitrary set of labels, and a
label cost function ¢’ on L’ such that for all £ € L, ¢/(A\(¢)) < c(¥).

For T =(S,L,c, T,sp, S«) € F the label-reduced transition system
is T = (S, L'/, {(s,\N(£),) | (s,£,t) € T}, s0,5,).

The label-reduced FTS is FA<) = {TXe) | T € F}.

L'NL#0and L' =L are allowed.

Summary

Label Reduction
000000®000000

Label Reduction is Conservative

Theorem (Label Reduction is Safe)

Let F be a factored transition systems and (\,c’) be a
label-reduction for F.
The transformation (F, id, A, F»<)) is conservative.

(Proof omitted.)

Label Reduction
000000®000000

Label Reduction is Conservative

Theorem (Label Reduction is Safe)

Let F be a factored transition systems and (\,c’) be a
label-reduction for F.
The transformation (F, id, A, F»<)) is conservative.

(Proof omitted.)

We can use label reduction as an additional possible step in
merge-and-shrink.

Label Reduction

0O000000e00000

More Terminology

Let F be a factored transition systems with labels L. Let £,¢' € L
be labels and let 7 € F.

m Label Zis alive in F if all 7/ € F have some transition labelled
with £. Otherwise, /¢ is dead.

m Label 7 locally subsumes label ¢ in T if for all transitions
(s,0',t) of T there is also a transition (s, ¢, t) in 7.
m / globally subsumes ¢ if it locally subsumes ¢ in all 77 € F.

m ¢ and ¢ are locally equivalent in 7T if they label the same
transitions in 7T, i.e. £ locally subsumes ¢’ in T and vice versa.

m ¢ and ¢ are T-combinable if they are locally equivalent in all
transition systems 7' € F\ {T}.

Label Reduction iterature Summary

0000000080000

Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let F be a factored transition systems with cost function ¢ and
label set L that contains no dead labels.
Let (X, c’) be a label-reduction for F such that A combines labels
{1 and {5 and leaves other labels unchanged. The transformation
from F to FN) s exact iff c(£y) = c(£2), ¢/(M(€)) = c(¢) for all
Lel, and

m V1 globally subsumes {5, or

m V5 globally subsumes {1, or

m /1 and V> are T -combinable for some T € F.

(Proof omitted.)

Label Reduction
000000000e000

0,0 ,p,p',q

T’

Label o globally subsumes label o’.

Label Reduction
0000000000800

o".p,p'q

T’

Labels p and p’ are T-combinable.

Strategies Label Reduction

00000000000 e0

Computation of Exact Label Reduction (1)

m For given labels /1, /5, the criteria can be tested in low-order
polynomial time.

m Finding globally subsumed labels involves finding subset
relationsships in a set family.
~> no linear-time algorithms known

m The following algorithm exploits only 7T-combinability.

Label Reduction Summary

000000000000 e

Computation of Exact Label Reduction (2)

eq; := set of label equivalence classes of 7; € F

Label-reduction based on 7;-combinability

eq :={[l]~. | L€ Ll ~c 0" iff c(') = c(¢")}
for j e {1,...,|F|}\ {i}

Refine eq with eq;
// two labels are in the same set of eq iff they have
// the same cost and are locally equivalent in all 7; # 7;.
A=id
for B € eq

lhew = new label

¢/ (lnew) := cost of labels in B

for (€ B

>\(£) = gnew

Pruning

Merge & Shrink }7

Pruning
0®000

_{

Synchronized Product

—{ Factored Transition Systems ‘

— Merge & Shrink Algorithm |

—{ Heuristic Representation ‘

Heuristic Properties

Strategies

Label Reduction

A

Pruning

Strategies a Pruning

Alive States

reachable

-OF—0O0—0O—@

backward-reachable

m state s is reachable if we can reach it from the initial state
m state s is backward-reachable if we can reach the goal from s

m state s is alive if it is reachable and backward-reachable
— only alive states can be traversed by a solution

m a state s is dead if it is not alive.

Strategies a Pruning

Pruning States (1)

m If in a factor, state s is dead/not backward-reachable then all
states that “cover” s in a synchronized product are dead/not
backward-reachable in the synchronized product.

m Removing such states and all adjacent transitions in a factor
does not remove any solutions from the synchronized product.

m This pruning leads to states in the original state space for
which the merge-and-shrink abstraction does not define an
abstract state.

— use heuristic estimate oo

Strategies a Pruning

Pruning States (2)

m Keeping exactly all backward-reachable states we still obtain
safe, consistent, goal-aware and admissible (with conservative
transformations) or perfect heuristics (with exact
transformations).

m Pruning unreachable, backward-reachable states can render
the heuristic inadmissible because pruned states lead to
infinite estimates.

m However, all reachable states in the original state space will
have admissible estimates, so we can use the heuristic like an
admissible one in a forward state-space search such as A*(but
not in other contexts like such as orbit search).

We usually prune all dead states to keep the factors small.

Literature
©0000

Literature

Literature
0®000

Literature (1)

References on merge-and-shrink abstractions:

@ Klaus Drager, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.

Proc. SPIN 2006, pp. 19-34, 2006.
Introduces merge-and-shrink abstractions (for model checking)
and DFP merging strategy.

@ Malte Helmert, Patrik Haslum and Jorg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.

Proc. ICAPS 2007, pp. 176-183, 2007.
Introduces merge-and-shrink abstractions for planning.

Literature
00800

Literature (2)

ﬁ Raz Nissim, Jorg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstractions
in Optimal Planning.

Proc. IJCAI 2011, pp. 1983-1990, 2011.
Introduces bisimulation-based shrinking.

@ Malte Helmert, Patrik Haslum, Jorg Hoffmann
and Raz Nissim.
Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1-63, 2014,
Detailed journal version of the previous two publications.

Literature
000@0

Literature (3)

@ Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358-2366, 2014.

Introduces modern version of label reduction.
(There was a more complicated version before.)

[@ Gaojian Fan, Martin Miiller and Robert Holte.
Non-linear merging strategies for merge-and-shrink
based on variable interactions.

Proc. SoCS 2014, pp. 53-61, 2014.
Introduces UMC and MIASM merging strategies

Literature
0000@

Literature (4)

@ Malte Helmert, Gabriele Réger and Silvan Sievers.
On the Expressive Power of Non-Linear Merge-and-Shrink
Representations.
Proc. ICAPS 2015, pp. 106-1014, 2015.
Shows that linear merging can require a super-polynomial
blow-up in representation size.

[@ Silvan Sievers and Malte Helmert.
Merge-and-Shrink: A Compositional Theory of
Transformations of Factored Transition Systems.
JAIR 71, pp. 781-883, 2021.
Detailed theoretical analysis of task transformations as
sequence of transformations.

Summarn
0

Summary

ummary
°

Strategies ’ g S
e 00 00« e o]

Summary

m There is a wide range of merging strategies. We only covered
some important ones.

m Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.

m Pruning is used to keep the size of the factors small. It
depends on the intended application how aggressive the
pruning can be.

	Merging Strategies
	

	Label Reduction
	

	Pruning
	

	Literature
	

	Summary
	

