

Planning and Optimization

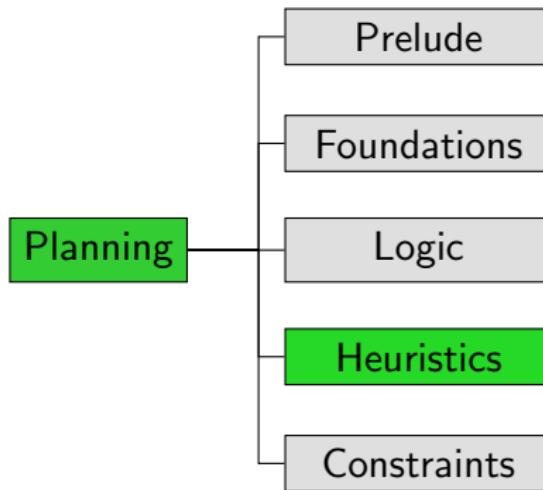
E12. Merge-and-Shrink: Merging Strategies and Label Reduction

Malte Helmert and Gabriele Röger

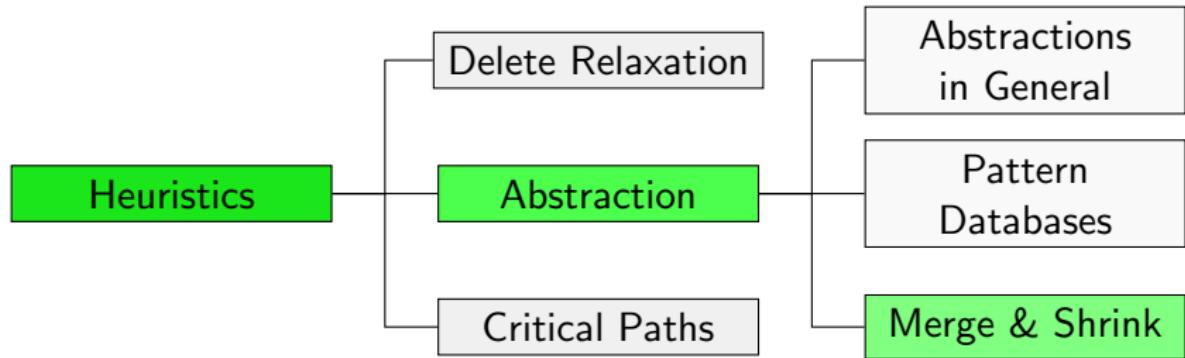
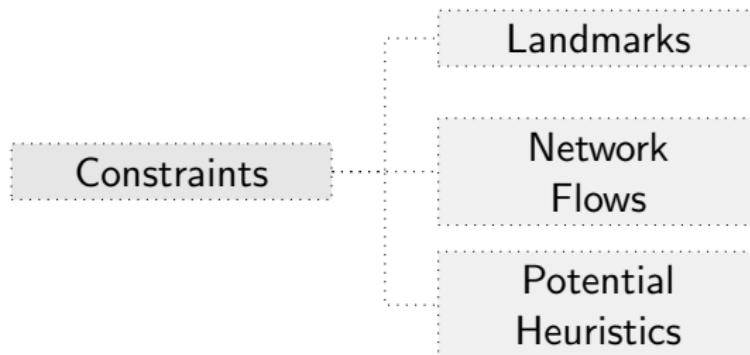
Universität Basel

November 21, 2022

Content of this Course



Content of this Course: Heuristics



Merging Strategies

Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

$F := F(\Pi)$

while $|F| > 1$:

select $type \in \{\text{merge, shrink}\}$

if $type = \text{merge}$:

select $\mathcal{T}_1, \mathcal{T}_2 \in F$

$F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}$

if $type = \text{shrink}$:

select $\mathcal{T} \in F$

choose an abstraction mapping β on \mathcal{T}

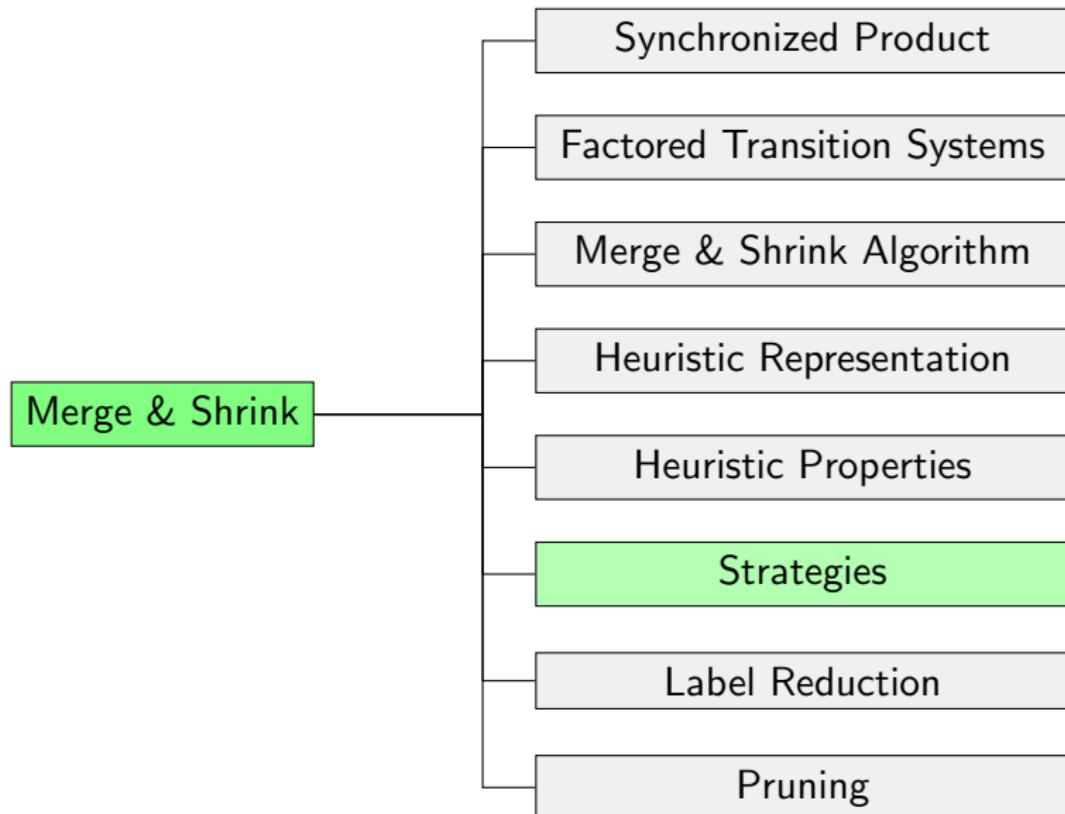
$F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^\beta\}$

return the remaining factor \mathcal{T}^α in F

Remaining Question:

- Which abstractions to select for merging? \rightsquigarrow merging strategy

Merge-and-Shrink



Linear Merging Strategies

Linear Merging Strategy

In each iteration after the first, choose the abstraction computed in the previous iteration as \mathcal{T}_1 .

Rationale: only maintains one “complex” abstraction at a time

~~ Fully defined by an ordering of atomic projections.

Linear Merging Strategies: Choosing the Ordering

Use similar causal graph criteria as for growing patterns.

Example: Strategy of h_{HHH}

h_{HHH} : Ordering of atomic projections

- Start with a goal variable.
- Add variables that appear in preconditions of operators affecting previous variables.
- If that is not possible, add a goal variable.

Rationale: increases h quickly

Non-linear Merging Strategies

- Non-linear merging strategies only recently gained more interest in the planning community.
- One reason: Better label reduction techniques (later in this chapter) enabled a more efficient computation.
- Examples:
 - **DFP**: preferably merge transition systems that must synchronize on labels that occur close to a goal state.
 - **UMC** and **MIASM**: Build clusters of variables with strong interactions and first merge variables within each cluster.
- Each merge-and-shrink heuristic computed with a non-linear merging strategy can also be computed with a linear merging strategy.
- However, linear merging can require a super-polynomial blow-up of the final representation size.

Merging Strategies
oooooo

Label Reduction
●oooooooooooo

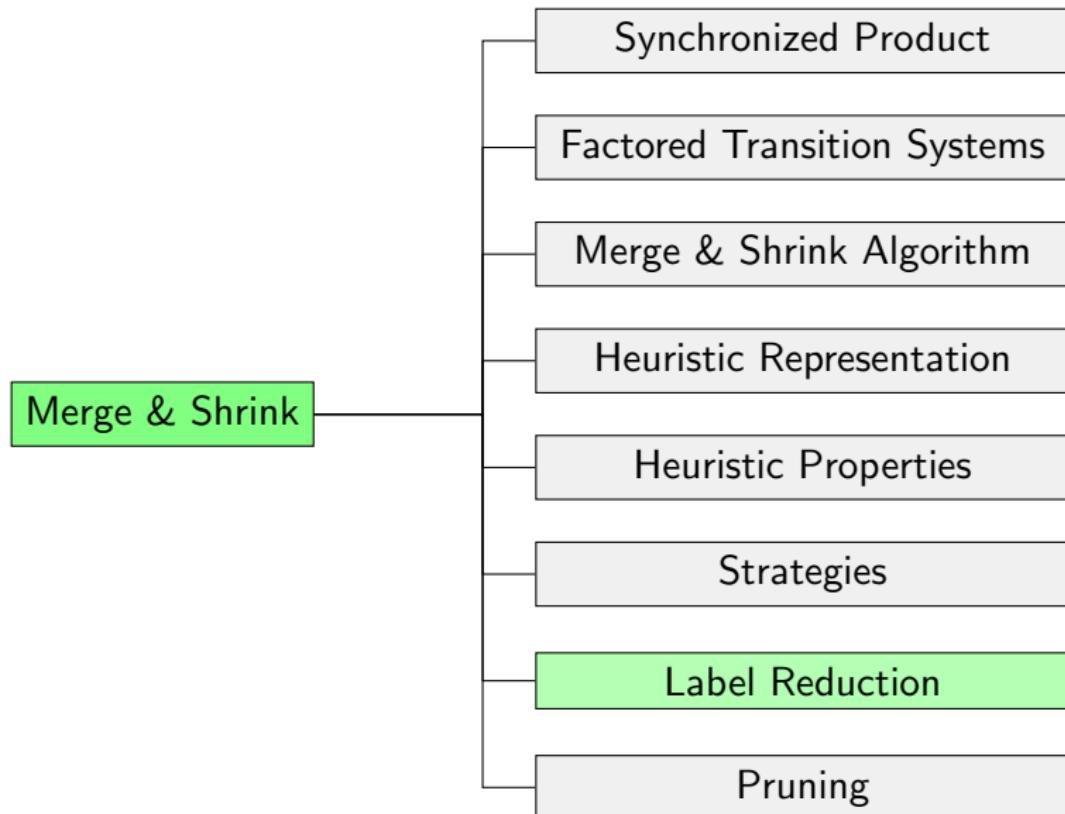
Pruning
ooooo

Literature
ooooo

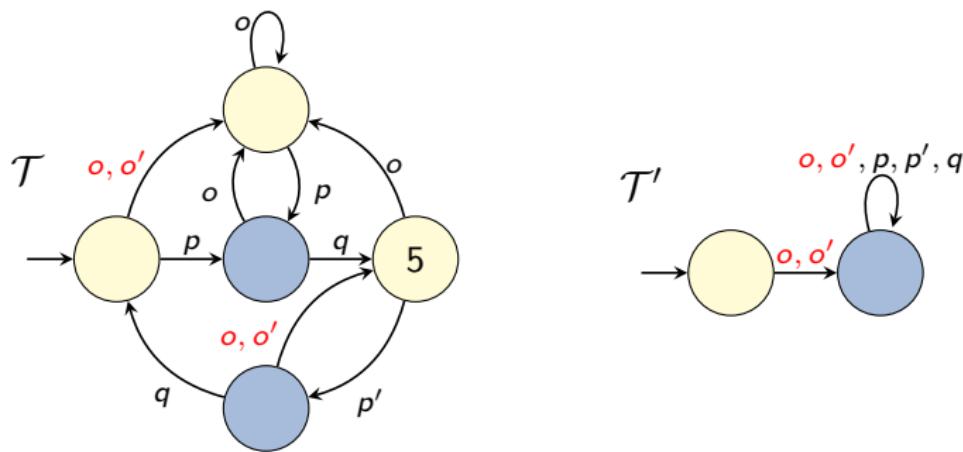
Summary
oo

Label Reduction

Merge-and-Shrink



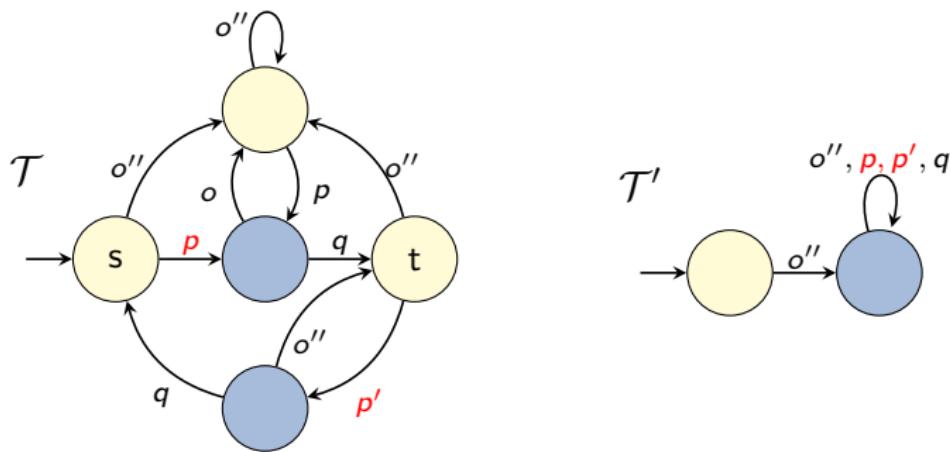
Label Reduction: Motivation (1)



Whenever there is a transition with label o' there is also a transition with label o . If o' is not cheaper than o , we can always use the transition with o .

Idea: Replace o and o' with label o'' with cost of o

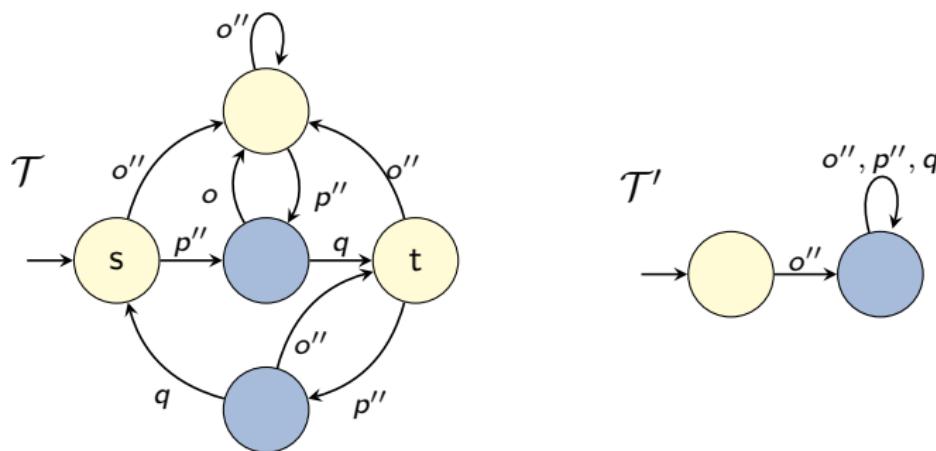
Label Reduction: Motivation (2)



States s and t are not bisimilar due to labels p and p' . In \mathcal{T}' they label the same (parallel) transitions. If p and p' have the same cost, in such a situation there is no need for distinguishing them.

Idea: Replace p and p' with label p'' with same cost.

Label Reduction: Motivation (3)



Label reductions reduce the time and memory requirement for merge and shrink steps and enable coarser bisimulation abstractions.

When is label reduction a conservative transformation?

Label Reduction: Definition

Definition (Label Reduction)

Let F be a factored transition system with label set L and label cost function c . A **label reduction** $\langle \lambda, c' \rangle$ for F is given by a function $\lambda : L \rightarrow L'$, where L' is an arbitrary set of labels, and a label cost function c' on L' such that for all $\ell \in L$, $c'(\lambda(\ell)) \leq c(\ell)$.

For $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle \in F$ the **label-reduced transition system** is $\mathcal{T}^{\langle \lambda, c' \rangle} = \langle S, L', c', \{ \langle s, \lambda(\ell), t \rangle \mid \langle s, \ell, t \rangle \in T \}, s_0, S_* \rangle$.

The **label-reduced FTS** is $F^{\langle \lambda, c' \rangle} = \{ \mathcal{T}^{\langle \lambda, c' \rangle} \mid \mathcal{T} \in F \}$.

$L' \cap L \neq \emptyset$ and $L' = L$ are allowed.

Label Reduction is Conservative

Theorem (Label Reduction is Safe)

Let F be a factored transition systems and $\langle \lambda, c' \rangle$ be a label-reduction for F .

The **transformation $\langle F, id, \lambda, F^{\langle \lambda, c' \rangle} \rangle$ is conservative**.

(Proof omitted.)

Label Reduction is Conservative

Theorem (Label Reduction is Safe)

Let F be a factored transition systems and $\langle \lambda, c' \rangle$ be a label-reduction for F .

The **transformation $\langle F, id, \lambda, F^{\langle \lambda, c' \rangle} \rangle$ is conservative**.

(Proof omitted.)

We can use label reduction as an additional possible step in merge-and-shrink.

More Terminology

Let F be a factored transition systems with labels L . Let $\ell, \ell' \in L$ be labels and let $\mathcal{T} \in F$.

- Label ℓ is **alive** in F if all $\mathcal{T}' \in F$ have some transition labelled with ℓ . Otherwise, ℓ is **dead**.
- Label ℓ **locally subsumes** label ℓ' in \mathcal{T} if for all transitions $\langle s, \ell', t \rangle$ of \mathcal{T} there is also a transition $\langle s, \ell, t \rangle$ in \mathcal{T} .
- ℓ **globally subsumes** ℓ' if it locally subsumes ℓ' in all $\mathcal{T}' \in F$.
- ℓ and ℓ' are **locally equivalent** in \mathcal{T} if they label the same transitions in \mathcal{T} , i.e. ℓ locally subsumes ℓ' in \mathcal{T} and vice versa.
- ℓ and ℓ' are **\mathcal{T} -combinable** if they are locally equivalent in all transition systems $\mathcal{T}' \in F \setminus \{\mathcal{T}\}$.

Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

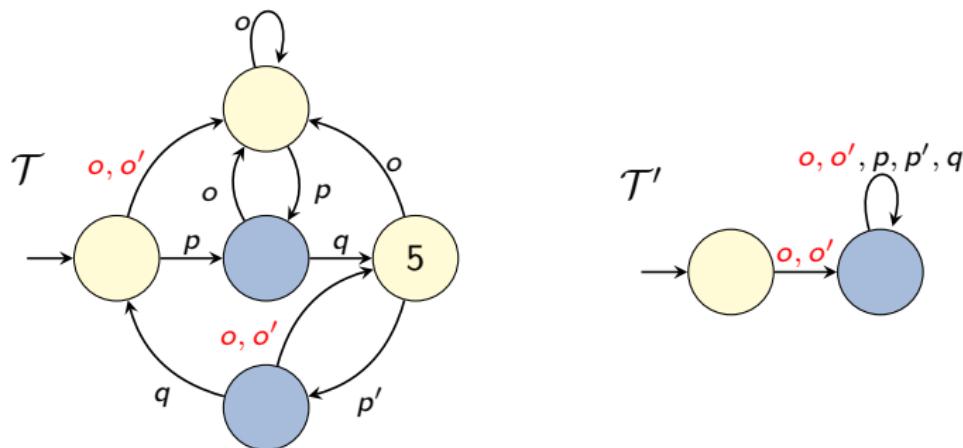
Let F be a factored transition systems with cost function c and label set L that contains no dead labels.

Let $\langle \lambda, c' \rangle$ be a label-reduction for F such that λ combines labels ℓ_1 and ℓ_2 and leaves other labels unchanged. The **transformation from F to $F^{\langle \lambda, c' \rangle}$ is exact** iff $c(\ell_1) = c(\ell_2)$, $c'(\lambda(\ell)) = c(\ell)$ for all $\ell \in L$, and

- ℓ_1 globally subsumes ℓ_2 , or
- ℓ_2 globally subsumes ℓ_1 , or
- ℓ_1 and ℓ_2 are \mathcal{T} -combinable for some $\mathcal{T} \in F$.

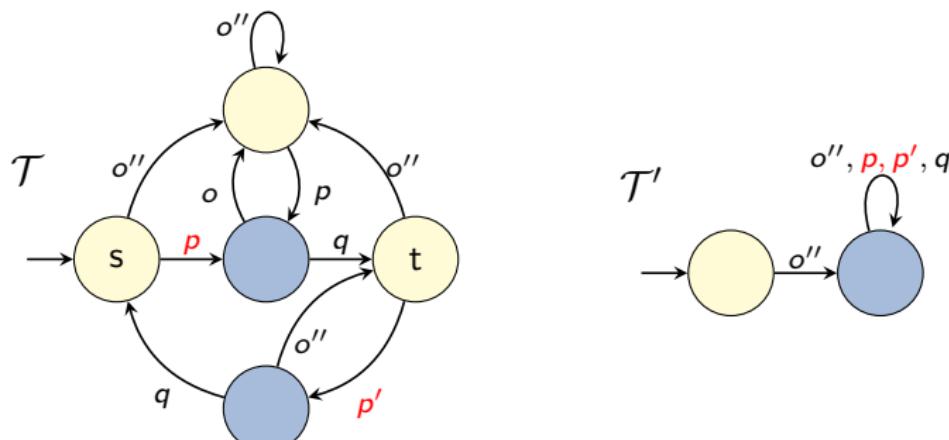
(Proof omitted.)

Back to Example (1)



Label o globally subsumes label o' .

Back to Example (2)



Labels p and p' are \mathcal{T} -combinable.

Computation of Exact Label Reduction (1)

- For given labels ℓ_1, ℓ_2 , the criteria can be tested in low-order polynomial time.
- Finding globally subsumed labels involves finding subset relationships in a set family.
~~ no linear-time algorithms known
- The following algorithm exploits only \mathcal{T} -combinability.

Computation of Exact Label Reduction (2)

$eq_i :=$ set of label equivalence classes of $\mathcal{T}_i \in \mathcal{F}$

Label-reduction based on \mathcal{T}_i -combinability

$eq := \{[\ell]_{\sim_c} \mid \ell \in L, \ell' \sim_c \ell'' \text{ iff } c(\ell') = c(\ell'')\}$

for $j \in \{1, \dots, |\mathcal{F}|\} \setminus \{i\}$

 Refine eq with eq_j

 // two labels are in the same set of eq iff they have

 // the same cost and are locally equivalent in all $\mathcal{T}_j \neq \mathcal{T}_i$.

$\lambda = \text{id}$

for $B \in eq$

$\ell_{\text{new}} :=$ new label

$c'(\ell_{\text{new}}) :=$ cost of labels in B

for $\ell \in B$

$\lambda(\ell) = \ell_{\text{new}}$

Merging Strategies
oooooooo

Label Reduction
oooooooooooo

Pruning
●oooo

Literature
oooo

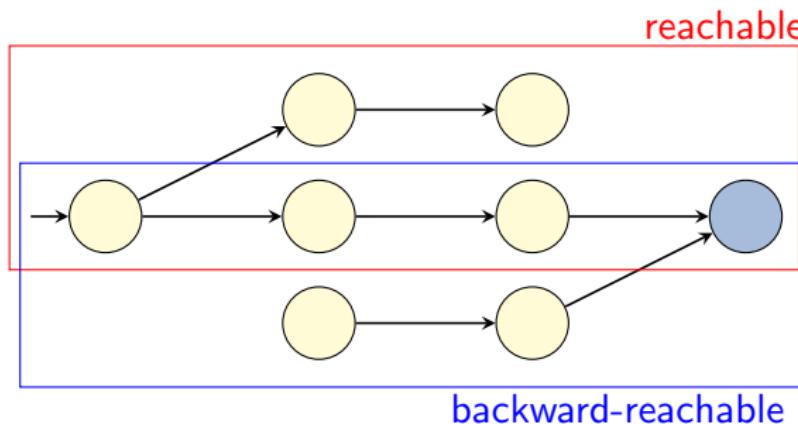
Summary
oo

Pruning

Merge-and-Shrink



Alive States



- state s is **reachable** if we can reach it from the initial state
- state s is **backward-reachable** if we can reach the goal from s
- state s is **alive** if it is reachable and backward-reachable
→ only alive states can be traversed by a solution
- a state s is **dead** if it is not alive.

Pruning States (1)

- If in a factor, state s is dead/not backward-reachable then all states that “cover” s in a synchronized product are dead/not backward-reachable in the synchronized product.
- Removing such states and all adjacent transitions in a factor does not remove any solutions from the synchronized product.
- This pruning leads to states in the original state space for which the merge-and-shrink abstraction does not define an abstract state.
→ use heuristic estimate ∞

Pruning States (2)

- Keeping exactly all backward-reachable states we still obtain safe, consistent, goal-aware and admissible (with conservative transformations) or perfect heuristics (with exact transformations).
- Pruning unreachable, backward-reachable states can render the heuristic inadmissible because pruned states lead to infinite estimates.
- However, all reachable states in the original state space will have admissible estimates, so we can use the heuristic like an admissible one in a forward state-space search such as A* (but not in other contexts like such as orbit search).

We usually prune all dead states to keep the factors small.

Merging Strategies
oooooooo

Label Reduction
oooooooooooo

Pruning
ooooo

Literature
●oooo

Summary
oo

Literature

Literature (1)

References on merge-and-shrink abstractions:

- **Klaus Dräger, Bernd Finkbeiner and Andreas Podelski.**
Directed Model Checking with Distance-Preserving Abstractions.
Proc. SPIN 2006, pp. 19–34, 2006.
Introduces merge-and-shrink abstractions (for model checking) and **DFP** merging strategy.
- **Malte Helmert, Patrik Haslum and Jörg Hoffmann.**
Flexible Abstraction Heuristics for Optimal Sequential Planning.
Proc. ICAPS 2007, pp. 176–183, 2007.
Introduces merge-and-shrink abstractions **for planning**.

Literature (2)

- Raz Nissim, Jörg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstractions
in Optimal Planning.
Proc. IJCAI 2011, pp. 1983–1990, 2011.
Introduces **bisimulation-based shrinking**.
- Malte Helmert, Patrik Haslum, Jörg Hoffmann
and Raz Nissim.
Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1–63, 2014.
Detailed **journal version** of the previous two publications.

Literature (3)

Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358–2366, 2014.
Introduces modern version of **label reduction**.
(There was a more complicated version before.)

Gaojian Fan, Martin Müller and Robert Holte.
Non-linear merging strategies for merge-and-shrink
based on variable interactions.
Proc. SoCS 2014, pp. 53–61, 2014.
Introduces **UMC** and **MIASM** merging strategies

Literature (4)

- Malte Helmert, Gabriele Röger and Silvan Sievers.
On the Expressive Power of Non-Linear Merge-and-Shrink Representations.
Proc. ICAPS 2015, pp. 106–1014, 2015.
Shows that **linear merging can require a super-polynomial blow-up** in representation size.
- Silvan Sievers and Malte Helmert.
Merge-and-Shrink: A Compositional Theory of Transformations of Factored Transition Systems.
JAIR 71, pp. 781–883, 2021.
Detailed theoretical analysis of task transformations as **sequence of transformations**.

Merging Strategies
oooooooo

Label Reduction
oooooooooooo

Pruning
ooooo

Literature
ooooo

Summary
●○

Summary

Summary

- There is a wide range of merging strategies. We only covered some important ones.
- **Label reduction** is crucial for the performance of the merge-and-shrink algorithm, especially when using bisimilarity for shrinking.
- **Pruning** is used to keep the size of the factors small. It depends on the intended application how aggressive the pruning can be.