

E6.1 Projections and Pattern Database Heuristics

M. Helmert, G. Röger (Universität Basel)

November 9, 2022

E6. Pattern Databases: Introduction

Projections and Pattern Database Heuristics

5 / 28

Pattern Database Heuristics Informally

Pattern Databases: Informally

A pattern database heuristic for a planning task is an abstraction heuristic where

some aspects of the task are represented in the abstraction with perfect precision, while

Planning and Optimization

▶ all other aspects of the task are not represented at all.

This is achieved by projecting the task onto the variables that describe the aspects that are represented.

Example (15-Puzzle)

- Choose a subset T of tiles (the pattern).
- \blacktriangleright Faithfully represent the locations of ${\cal T}$ in the abstraction.
- Assume that all other tiles and the blank can be anywhere in the abstraction.

Planning and Optimization

7 / 28

Pattern Database Heuristics

- The most commonly used abstraction heuristics in search and planning are pattern database (PDB) heuristics.
- PDB heuristics were originally introduced for the 15-puzzle (Culberson & Schaeffer, 1996) and for Rubik's cube (Korf, 1997).
- The first use for domain-independent planning is due to Edelkamp (2001).
- Since then, much research has focused on the theoretical properties of pattern databases, how to use pattern databases more effectively, how to find good patterns, etc.
- Pattern databases are a very active research area both in planning and in (domain-specific) heuristic search.
- For many search problems, pattern databases are the most effective admissible heuristics currently known.

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

November 9, 2022 6 / 28

Projections and Pattern Database Heuristics

E6. Pattern Databases: Introduction

Projections

Formally, pattern database heuristics are abstraction heuristics induced by a particular class of abstractions called projections.

Definition (Projection)

Let Π be an FDR planning task with variables V and states S. Let $P \subseteq V$, and let S' be the set of states over P. The projection $\pi_P : S \to S'$ is defined as $\pi_P(s) := s|_P$,

(where $s|_P(v) := s(v)$ for all $v \in P$).

We call *P* the pattern of the projection π_P .

In other words, π_P maps two states s_1 and s_2 to the same abstract state iff they agree on all variables in P.

Planning and Optimization

8 / 28

Projections and Pattern Database Heuristics

Pattern Database Heuristics

Abstraction heuristics based on projections are called pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic) The abstraction heuristic induced by π_P is called a pattern database heuristic or PDB heuristic. We write h^P as a shorthand for h^{π_P} .

Why are they called pattern database heuristics?

- Heuristic values for PDB heuristics are traditionally stored in a 1-dimensional table (array) called a pattern database (PDB). Hence the name "PDB heuristic".
- The word pattern database alludes to endgame databases for 2-player games (in particular chess and checkers).

Planning and Optimization

```
M. Helmert, G. Röger (Universität Basel)
```

November 9, 2022 9 / 28

M. Helmert, G. Röger (Universität Basel)

Implementing PDBs: Precomputation

Syntactic Projections

Definition (Syntactic Projection)

Let $\Pi = \langle V, I, O, \gamma \rangle$ be an FDR planning task, and let $P \subseteq V$ be a subset of its variables. The syntactic projection $\Pi|_P$ of Π to P is the FDR planning task $\langle P, I|_P, \{o|_P \mid o \in O\}, \gamma|_P \rangle$, where

- ▶ $\varphi|_P$ for formula φ is defined as the formula obtained from φ by replacing all atoms (v = d) with $v \notin P$ by \top , and
- o|_P for operator o is defined by replacing all formulas φ occurring in the precondition or effect conditions of o with φ|_P and all atomic effects (v := d) with v ∉ P with the empty effect ⊤.

Planning and Optimization

Put simply, $\Pi|_P$ throws away all information not pertaining to variables in P.

M. Helmert, G. Röger (Universität Basel)

November 9, 2022 17 / 28

E6. Pattern Databases: Introduction

Implementing PDBs: Precomputation

PDB Computation

Using the equivalence theorem, we can compute pattern databases for SAS⁺ tasks Π and patterns *P*:

Computing Pattern Databases

def compute-PDB(Π , P): Compute $\Pi' := \Pi|_P$. Compute $\mathcal{T}' := \mathcal{T}(\Pi')$. Perform a backward uniform-cost search from the goal states of \mathcal{T}' to compute all abstract goal distances. PDB := a table containing all goal distances in \mathcal{T}' **return** PDB

Planning and Optimization

The algorithm runs in polynomial time and space in terms of $\|\Pi\| + |PDB|$.

19 / 28

E6. Pattern Databases: Introduction

Implementing PDBs: Precomputation

Going Beyond SAS⁺ Tasks

- Most practical implementations of PDB heuristics are limited to SAS⁺ tasks (or modest generalizations).
- One way to avoid the issues with general FDR tasks is to convert them to equivalent SAS⁺ tasks.
- However, most direct conversions can exponentially increase the task size in the worst case.

Planning and Optimization

 \rightsquigarrow We will only consider SAS⁺ tasks in the chapters dealing with pattern databases.

E6. Pattern Databases: Introduction

M. Helmert, G. Röger (Universität Basel)

Implementing PDBs: Lookup

21 / 28

November 9, 2022

Lookup Step: Overview

- During search, the PDB is the only piece of information necessary to represent h^P. (It is not necessary to store the abstract transition system itself at this point.)
- Hence, the space requirements for PDBs during search are linear in the number of abstract states S': there is one table entry for each abstract state.
- During search, h^P(s) is computed by mapping π_P(s) to a natural number in the range {0,..., |S'| − 1} using a perfect hash function, then looking up the table entry for this number.

E6.3 Implementing PDBs: Lookup

M. Helmert, G. Röger (Universität Basel)

E6. Pattern Databases: Introduction

November 9, 2022 22 / 28

Implementing PDBs: Lookup

E6. Pattern Databases: Introduction Lookup Step: Algorithm Let P = {v₁,...,v_k} be the pattern. We assume that all variable domains are natural numbers counted from 0, i.e., dom(v) = {0, 1, ..., |dom(v)| - 1}. For all i ∈ {1,...,k}, we precompute N_i := ∏_{j=1}ⁱ⁻¹ |dom(v_j)|. Then we can look up heuristic values as follows: Computing Pattern Database Heuristics def PDB-heuristic(s): index := ∑_{i=1}^k N_is(v_i) return PDB[index] This is a very fast operation: it can be performed in O(k). For comparison, most relaxation heuristics need time O(||Π||) per state.

Planning and Optimization

Planning and Optimization

E6. Pattern Databases: Introduction								Implementing PDBs: Lookup		
Lookup Step: Example (2)										
p			(-)							
\blacktriangleright $P = \{v_1, v_2\}$ with $v_1 = \text{package}, v_2 = \text{truck A}.$										
• dom $(v_1) = \{L, R, A, B\} \approx \{0, 1, 2, 3\}$										
$b \operatorname{dom}(v_0) = \{I, R\} \approx \{0, 1\}$										
$\mathbf{v}_{2j} = \{\mathbf{L}, \mathbf{N}\} \sim \{0, \mathbf{I}\}$										
$\rightsquigarrow N_1 = \prod_{i=1}^{0} \operatorname{dom}(v_i) = 1, N_2 = \prod_{i=1}^{1} \operatorname{dom}(v_i) = 4$										
\rightarrow index(s) = 1 · s(package) + 4 · s(truck A)										
Pattern database:										
abstract state	se.	РI	Δ1	BI	IP	PP	٨P	BB		
indox		1	7L 2	2		5	6	7		
nuex	2	1	2	ך 1	4 0	0	1	<i>1</i>		
value	2	0	2	T	2	0	T	T		
M. Helmert, G. Röger (Universität Basel) Planning and Op					nization			November 9,	2022	26 / 28

M. Helmert, G. Röger (Universität Basel)